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Abstract. We present a socio-epistemic model of science inspired by
the existing literature on opinion dynamics. We place the agents into so-
cial networks and put them into an epistemic space - a three-dimensional
lattice where each site represents a unique topic or concept. We arrange
this space according to the similarity between issues and allow the agents
to move across it. They learn from each other, explore their local lattice,
and collect new thoughts and ideas about their mental representations
of the world. Ultimately, we keep track of every movement by the agent
across the epistemic space seeking to understand the popularity of differ-
ent knowledge clusters or scientific fields. Therefore, we propose an ana-
lytical model that examines the connection between agents’ accumulated
knowledge, social learning, and the span of attitudes toward mental mod-
els in an artificial society. While we rely on the example from the General
Theory of Relativity Renaissance, our goal is to observe what determines
the creation and diffusion of mental models. We offer quantitative and
inductive research, which collects data from an artificial environment to
elaborate generalized theories about the evolution of science.
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1 Introduction

We present a dynamic model illustrating the structural changes in the socio-
epistemic networks of physics. In particular, we focus on the collaborative, cita-
tion, and epistemic transformations witnessed during the so-called Renaissance
of the General Theory of Relativity. It was a period of fast shifts in the field
when the theory first developed by Einstein went from marginal to a pillar of
modern physics [1]. Yet, we know little about the potential causes behind this
renaissance - nor why it took perhaps so long to happen. Hence, we hope our
data and methods can help uncover the causes, markers, and consequences of
developing scientific theories and fields.

While we focus on the General Theory of Relativity, we wish more broadly
to observe what influences the slow diffusion process and consolidation of new
scientific paradigms. In other words, we seek to reconstruct and examine a “sci-
entific tipping point” as emerging from the interactions of agents under a “small
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number of simple assumptions” [2]. Indeed, there is ample evidence of similar
“contagious” processes whereby “solitary” discoveries slowly transform into es-
tablished scientific communities with shared practices and commitments [3].

Succinctly, we are working towards an agent-based model of science inspired
by the existing literature on opinion dynamics. Like previous models, in this
ABM, we arrange the agents into a social network and give them mental repre-
sentations of the world. We allow them to interact, learn from each other, and
collect new thoughts and ideas for their mental models. Therefore, the agents
continually update their beliefs about the world. And we keep track of their
movements seeking to understand the popularity of different mental models. We
allow this artificial society to progress as we try to observe the clustering of
agents around a theme or an “endogenously emerging coordination” of scientists
around “shared ideas and commitments” [4].

2 Data & Methods

2.1 The Epistemic Layer

We represent each knowledge unit as a triple, where elements can take the
value of any integer between 0 and 256. And we arrange these units in a three-
dimensional cube according to their cognitive similarity [5]. Thus, we can imagine
the epistemic layer as representing an RGB function.

Besides the three-dimensional vector that gives each site a unique identity,
we track the number of agents currently located in their vicinity and the number
of agents who added the site to their mental models.

We use these variables to calculate a unique fitness value for each site - i.e.,
their attractability to surrounding agents. We assume that if there are too few
agents in the position, the probability of recognition is low. And when there are
too many agents, it is harder to stand out [4]. Therefore we model fitness as a
logarithmic function of popularity:

Πst = ln(nst) (1)

where nst represents the site’s population. We measure it as the count of agents
with the site’s triple in their knowledge stocks and the number of agents currently
located within a given radius.

2.2 The Agents

Each agent represents a scholar. They are heterogeneous and described by static
and dynamic variables. We attribute them to social ties and a mental model
- i.e., a list containing all the topics they acquired. We also give the agents an
activation probability and a time-varying reputation or acknowledgment accrued
from all their previous publications.
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Mental Models (κit) We represent mental models as hypergraphs where each
subgroup is a unique combination of knowledge units common to the model.
Each agent has its mental representation of the world, which developed from its
historical paths across the epistemic layer - all the sites they’ve visited. Thus,
we can interpret the mental model as a growing list containing every triple the
agent accepted or learned. For example, we could represent the mental model of
one agent as [(10, 20, 10), (10, 25, 10), ..., (15, 25, 10)].

The Simulating Knowledge Dynamics in Innovation Networks platform serves
as our inspiration [5]. But we extend the original metaphor and simulate agents
building on their models by “piecing together” different bits of knowledge - like
a jigsaw puzzle [6], ingredients in a recipe [7], words making up a vocabulary [8]
or a network [9]. Furthermore, we represent the evolution of their models similar
to the seashore walk analogy in [10].

Activation Probability (αi) Agents have distinct propensities to engage with
their surroundings - much like some authors are more prolific than others, and
people differ regarding how often they communicate or interact with one another.
Along these lines, the agents’ activation probability informs the likelihood we
will initialize the agent at each time step. The activation rate follows a power-
law distribution, and at the start of the simulation, we attribute to each agent
a unique value between [0, 1].

Acknowledgement (πit) It describes the agents’ reputation or prestige. Every
time the agent publishes a paper, they receive credit and acknowledgement. The
value they receive for each publication comes from a normal distribution centred
around the topic’s fitness - i.e., the number of agents accepting the idea. And we
model agents’ acknowledgement as the sum of all credits or values they collected
from all their publications.

We use acknowledgement as the agents’ profit function in the model. Al-
though we don’t describe the agents as profit-maximizing, including the variable
can lead to several possibilities for the ABM. First, we can use it in the repulsion-
attraction functions representing the influence agents exert over others - much
like the role of confidence in the basic opinion dynamics model [11]. Thus, dif-
ferences in reputation could lead to more heightened attraction forces between
a postdoc and a high-ranking professor.

Besides, we can use the variable to grow the social network. We could use a
variation to preferential attachment where incoming and living agents are more
likely to form connections to those with higher reputations.

2.3 The Social Layer

We connect the agents using an unweighted, undirected, and temporal network.
The ties between scholars portray co-authors or those working at the same place.
We assume the temporal graph follows a small-world or power-law distribution.
But its underlying structure depends on the sub-model specification so that we
can study how different social arrangements influence aggregate behaviour.
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Population Growth (δ) To simulate the exponential growth in PhD graduates
and postdoctoral researchers observed in the late 1950s [12], we include between
ticks a populational growth term:

Nt = (1 + δ)Nt−1 (2)

In other words, during every tick of the model, we add agents to the system.
These represent the PhD graduates, and we can think of them as “offsprings” of
their supervisors. Following a preferential attachment, newborns link to potential
supervisors according to the latter’s reputation or acknowledgement. And we
don’t assume newborns enter the system as a blank slate. Instead, they partially
inherit their supervisor’s mental models and connections.

We model a birth-death process akin to evolutionary computational models,
where acknowledgement determines the likelihood of “reproducing.” Newborns
randomly select a parent (or supervisor) weighted by their fitness, then they
form links to their supervisors and inherit their connections and models.

In line with [15], we assume that newborns always connect to their parents;
they inherit each of their parents’ links with a given probability and form new
connections with a different and smaller chance. Furthermore, we assume that
each new tie modifies the newborn’s inherited model to some extent - i.e., the
new social reference pulls the newborn’s model from its original form [2].

Sociability Growth Besides having more people, we observe more connections
between them. The network’s average degree grows in time. To account for it,
we allow the nodes already present in the network to form new links following
preferential attachment. Thus, we assume the probability of a new link between
two existing nodes is proportional to the product of their connectivities. We
calculate the likelihood of making a new connection as:

aNij = β ∗ kikj∑
kskm

Nt (3)

where ki is the degree centrality of the agent i. And the parameter β refers to
the number of newly created internal links per node in unit time.

The basic design for sociability growth comes from [16] work on the evo-
lution of scientific collaborations. They propose a simple generative model that
reproduces the following empirical results: average path length decreases in time,
clustering coefficient also decays, average degree increases, and the relative size
of the largest cluster grow. Therefore, the benchmark reproduces all aspects of
sociability growth we need, is prevalent in the relevant literature, and uses a
single parameter. But we also try alternative variations. For example, instead of
relying solely on connectivity, the preferential attachment could account for the
agent’s activation probability and acknowledgment - i.e., younger and proactive
agents are more likely to start connections to older and famous scientists.
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2.4 Opinion Dynamics

In each round, agents try to learn concepts from their peers, and we model this
process as them moving towards each other in the epistemic layer. Namely, the
agents randomly select someone from their social network and converge to their
current position in the three-dimensional cube.

The “speed” at which the agent moves is a logistic function of personal at-
tributes, social status, and epistemic distance:

∆KS
i =

1

1 + e−ϕ(κit−κjt)
(4)

where the weighting parameter ϕ is a function of the ratio between the agent’s
and their focal point’s acknowledgement. κ is their stock of ideas.

The current description follows the most basic setup for an opinion dynamics
model [11]. Like most previous studies, first, the agents choose a focal individual
and then partially assimilate their opinion. Many factors - e.g., confidence - can
affect how much influence one agent exerts over others, and we could equally
account for those. In the logistic function, we can weigh the cognitive distance
between agents by their “status difference” or their “open-mindedness.”

Environmental Learning Agents also move toward nearby topics according
to their popularity. We model their decision as an urn process whereby the
probability of selecting a site within a given radius is proportional to their fitness.
After choosing a focal site, the agent moves towards it following a similar function
to the one described in the social learning:

∆KE
i =

1

1 + e−λ(κit−κ∗)
(5)

where the weighting parameter λ is proportional to the site’s fitness and the
agent’s open-mindedness or activation rate. κ∗ is the site’s triple.

To keep it in line with social learning, we model environmental search by,
first, asking the agents to find a random “focal point” to which they will move.
So, in each round, they move towards one random site in their vicinity - where
the attraction force and the likelihood they choose this point are both a function
of the site’s popularity or fitness.

Hence, the current version differs from typical models using the “search in
rugged landscapes” metaphor [17]. Unlike the former, the agents do not compare
the payoffs between neighbour sites before moving from a lower to a higher
fitness point. The model also differs from works like [18], where they have a
global attraction force based on the suitability of different sites. These serve
as inspiration, but from there, we take from “gravitational models” in social
sciences [19]. In particular, the idea is to reproduce past research on human
mobility, which shows that people “choose a new location to visit depending on
both its distance from the current position, as well as its relevance” [20].
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Conferences Beyond social and environmental learning, a central premise in
this model is the role of conferences. To make these, we randomly sample a
number of agents - where the the group size is also random. And we find the
central point between them in the epistemic layer - the centroid of their positions
in the three-dimensional cube. Next, we define this centroid as the agents’ focal
point and request them to move towards it. The “speed of convergence” follows
the same rules as in the environmental learning process. Thus, the only difference
is how we find the focal point.

We can interpret the conferences as a process of “group learning.” In contrast
to social learning, therefore, when part of a conference, agents do not engage in
pairwise interactions [21]. Instead, all the attendees must move together towards
a central theme or topic. So, conferences work closer to a voter or majority rules
model [22] than the typical opinion dynamics paradigm in ABM.

Mining for acknowledgment After moving to a new location, the agent
strives to publish using this knowledge unit. And they collect credit from their
work. We model it as a stochastic process following a normal distribution with
the mean equal to the site’s fitness and standard deviation proportional to the
average distance between the agents’ mental model and the lattice.

πit ∼ N (Π, ⟨d(κ, κ∗)⟩) (6)

where Π is the site’s fitness and ⟨d(κ, κ∗)⟩ is the average distance between each
unit in the agent’s mental model and the site’s triple.

2.5 Data & Inputs

Our goal is to study the complex socio-epistemic transformations occurring in
physics post-1950s. Thus we can use data from the period before to calibrate
the ABM. Borrowing from the machine learning terminology, we use the period
between 1920 and 1950 akin to a training set. So, like [1], we collect data covering
publications in theoretical physics from the Web of Science and NASA ADS. And
we exploit it to construct our agents, attribute their initial conditions, place them
into social networks, and so forth. We use it to set up our artificial society.

We can follow the career paths of scientists to measure, for example, how often
they publish or the average distance between their keywords. Then we normalize
their records to get a distribution of value, which we use to initialize the agents.
Namely, we use this distribution to give them an activation probability propor-
tional to how often physicists published in 1920-1950, assign acknowledgment
values proportional to the number of citations, give them a list of topics, place
them in the epistemic layer, etc.

In addition, we use the data gathered by [1] to build and grow social net-
works. Beyond looking at co-authors and co-workers, their data provide extensive
information covering all ties between those working on the field. They provide
information on PhD graduates and their supervisors, the conferences happening
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at the time and who attended them, and much more. Thus, we benefit from this
wealth of information to set up our social layer.

The General Relativity Renaissance is our case study. Therefore we can em-
ploy the data from [1] to calibrate and validate our model. However, as usual,
we must acknowledge here the “danger that the simulation would be trivial and
reproduce the particular behavior without providing an insight into the general-
ity of the mechanism involved” [23]. We do not want to tailor the model to the
specific case of GR. Instead, we might need to have some variability regarding
the initial distribution of agents and mental models - as these could contribute
to our understanding of the impact of social structures on the epistemic layer.

2.6 Outputs

The keep the model as simple as possible, we start the epistemic layer as a
blank slate. We construct the three-dimensional cube with the desired size and
proportions. But we don’t attribute values, topics, or fitness to the sites. Instead,
we use the model inputs to start and run different populations moving across this
blank cube. So, we treat it as a canvas, where we can see how particular social
arrangements and starting positions might influence the final picture. Along
these lines, the variables that make the site’s popularity and fitness are the chief
outputs of the model. Similar to a double-ledger, we will have a record of every
agent’s history - their mental models. And also an environmental chronology of
how many people accepted the idea at a given time and the concentration or
dispersion of agents/publications in the cube. At last, we can use this data to
make colorful graphs showing the impact of the social layer on the epistemic
one. Since we are using the RGB function, our agents are technically learning
and discovering color palettes - so we can use it to “paint” immersive results.

2.7 Extending the Model

Building on the seashore metaphor, we will only allow the agents to move around
the three-dimensional cube. At each step, they stop at a different site and collect
a triple - a topic associated with their location. In other words, currently, the
mental models only represent a list of sites - a collection of ideas the agent
acquired at some point. But we could extend the method to allow the agents to
create or develop new ideas based on those they already hold. Instead of just
collecting or learning new “colours” from the environment, the agents can interact
with the units they know. They will “break, blend, and bind” the colours in their
stock to discover new elements [24]. The ABM would then progress similarly
to the Adder model [25] - where agents learn new numbers and formulas by
adding/subtracting the values in their repertoire. In sum, not only should the
agents collect new tools but also constantly upgrade, update, forget, and edit
their mental models - though this is beyond the focus for now.

Another matter that requires future work is how to efficiently combine the
different influences on the agent - i.e., how to update the agents’ position at each
step. Currently, we update each agent according to each function in a sequence
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- first, we move them toward their colleagues, then to a random topic, and so
forth. But perhaps there are better ways to describe this process. For example,
we could use a probabilistic function where each type of learning occurs with a
different frequency - perhaps we can make environmental learning more common
but weaker. Or we could have some agents more likely to engage in social learning
than others [26].

The basic assumption behind the model is that agents explore different top-
ics surrounding their interests but might also learn about far-removed issues
from their social ties. Because we are interested in the social influence on the
epistemic layer, it’s essential to show, for example, that social learning and in-
creased sociability can lead to different paths in the epistemic layer. Still, it’s
difficult to separate or delineate between the forces. Under the current setup, for
instance, we might think of environmental learning as a form of quorum sensing,
where agents decide the most relevant topics by looking at the number of agents
around it. Hence, we might also accept it as a social influence between individ-
uals - albeit an indirect effect. With that in mind, a simple yet elegant solution
is to combine all the elements into “one big urn model.” At each step, the agents
try to learn a new, focal topic. Their ability to efficiently acquire the “color”
depends on their distance and some personal attributes. But, most importantly,
the likelihood they will choose the topic must rely on several factors - e.g., its
popularity, how many of my friends know the issue, how often I visited the site
in the past, etc. And this must be a self-reinforcing urn - we constantly update
the probabilities of picking a site.

At last combining both issues discussed, we are currently working to intro-
duce a new schedule where, first, the agents try to acquire a new color. When
successful, they add the new triple to their repertoire but then engage in cre-
ative behaviour - i.e., they mix the new set with colours they acquired in the
past - to produce even more new pallets. Along these lines, the goal/role of
communication is to inform others about your newly found/acquired colors.

3 Discussion

Our model borrowed extensively from previous findings in social and cultural
evolution. However, most other models fail to produce a similar phase transi-
tion observed during the general relativity renaissance. In a sense, we lack a
robust description of the ever-changing nature of science, whereby new clusters
endogenously emerge but also break - thus leading to yet new paradigms and
conventions. The models we draw inspiration from do not acknowledge the iner-
tia behind the forces that explain how “minority groups can initiate social change
dynamics in the emergence of new social conventions” [27].

Succinctly, we seek an explanation for the renaissance that breaks the orig-
inal order and leads the system to a new path. We need a source of external
energy that breaks the inertia. And we are working with a few hypotheses and
ideas. First, we consider the impact of population growth. The general relativity
renaissance took place between the 1950s and 1970s. During this time, we ob-
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serve a nearly threefold increase in PhDs and postdocs entering the market. So
we ought to account for said growth.

Population growth is a feature of most ABMs in cultural accumulation - e.g.,
those dealing with the diffusion of tools in early societies [13]. Yet, they are
seldom part of opinion dynamics models. Perhaps because including population
growth prevents the system from stabilizing and makes analytical solutions al-
most impossible [14]. Altogether, we observe population growth in our data, and
still, we have little knowledge about how it will influence the dynamics of our sys-
tem. So we must depart from classic opinion models and include the exponential
population growth parameter as a sub-model definition of the ABM.

Besides having more people, we also observe more or perhaps different con-
nections between them. The technological progress of the time made it par-
ticularly easy to meet and maintain relations with authors far apart. And as
expected, we see that the average number of co-authors and citations to others
grows during this time. But we also notice new types of social connectivity or, at
least, new opportunities and venues for scholars to interact. Indeed, a common
feature of many developing disciplines is the development of new institutes, dedi-
cated volumes, and special issues [28]. The specialized venues organize the social
network into localized clusters with wide bridges. So, more than simply becom-
ing more connected, the network also evolves to allow for partial fragmentation
or modularity [29] [30].

Following the last argument, a central premise in this model is the role of
conferences. And in the ABM, we interpret the conferences as a “dual medium”
learning model. In other words, we intend to capture the duality of people learn-
ing and engaging in different environments or social layers. Like scientists who
engage daily in compartmentalized laboratories and travel to attend conferences,
we allow the agents in the ABM to interact with others using two distinct “rules.”
During “normal” circumstances, they behave like classic opinion dynamic models.
They assimilate the opinions of those in their social network, one at a time. But,
at different moments, and with a certain probability, the agents might attend a
conference. There, they will engage in "group learning."

Along these lines, adding the conferences to the model may introduce a higher
level of complexity and further diversity into the system. Borrowing again from
[14] thermal analogy, it can serve as a high-temperature micro-environment that
injects fluctuations away from the system’s inertia and towards new social con-
ventions - i.e., new scientific paradigms.
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