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Abstract. Skinner found that superstitious behaviour in pigeons results
from accidental operant conditioning. We use a simple cognitive model
based upon reinforcement learning to show that ritualisation of behaviour
arises in analogous conditions. This makes it possible to model the cre-
ation of ritual traditions using minimal means in agent-based models,
thereby opening a novel and potentially highly fruitful approach to the
study of this highly significant human behaviour.
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1 Introduction

Most research into ritualised behaviour tends towards high-level expla-
nations that involve, among other things, the cultural transmission of
supernatural beliefs. The explanation for the spontaneous appearance
of superstitious behaviours in pigeons provided by the behaviourist psy-
chologist B.F. Skinner could not be any more different [9]. It sought to
explain superstitious behaviour merely by reference to accidental oper-
ant conditioning. Understood as showing that superstitious behaviour
arises spontaneously where an agent - artificial or not - attempt to con-
trol an environment that is unpredictable, this line of research has been
expanded upon greatly by researchers such as Ono, who showed the
same effect in humans [8], as well as as Killeen, who showed that pigeons
placed in analogous conditions vary their rate of superstitious behaviour
in a way that maximises their pay-off given uncertainty [7]. Killeen’s ob-
servation has been generalised by Haselton and Buss, who showed that
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human and other evolved cognitive mechanisms will be biased in favour
of committing the least costly errors when operating under uncertainty,
i.e., they will exhibit error management [5]. Given the need to detect po-
tential threats/opportunities in the environment, people will avoid false
negative errors at the cost of making more false positive ones. This in-
cludes overdetecting causal connections and agency. Further research has
expanded the scope of this type of explanation even more by showing that
the kind of behaviour Skinner observed is a normal by-product even for
formal or computing mechanisms that attempt to predict system be-
haviour under conditions that are often met with in natural settings [2]
[4]. In effect, researchers working in the Skinner tradition have shown
that superstitious behaviour of all agents - be they artificial or natu-
ral - is to be explained as a by-product of the epistemic circumstances
encountered when attempting to control any unpredictable system.
The aim of the line of research pursued here is to see whether ritualised
behaviour can be explained in the same general terms, i.e., as the product
of false positive errors resulting from error management, and to explore
how changes in conditions affect spontaneous ritualisation in silico. Our
ultimate goal is to create an agent-based model, to be used to study the
emergence of stable rituals at the group level. In other words, we are
seeking to show that rituals, including group rituals, are also to be ulti-
mately explained in terms of a fundamental phenomenon that affects all
agents given the right set of basic conditions - with most aspects of rit-
uals as normally discussed (including supernatural beliefs or the role of
anxiety) being ancillary (see [10]). The definition of ritualised behaviour
used by us is drawn from Boyer and Lienard [3] where they identify five
basic characteristics common to ritualised behaviours. Three are inves-
tigated here: redundancy - including elements in one’s behaviour that
are not necessary to achieve the apparent aim; goal-demotion - including
elements in one’s behaviour that have no apparent effect; rigidity - per-
forming all of the elements, including the redundant and goal-demoted
ones, in a strict order. The modelled behaviour is studied with the use of
the PathGame - a (pseudo)game with clear and easily manipulable rules
that makes operationalisation and analysis straight forward.

2 The PathGame

PathGame is a novel methodology developed in order to empirically in-
vestigate the conditions under which humans, as well as computational
cognitive models, spontaneously ritualise their behaviour. It is based
upon Stuart Vyse’s earlier research [6] [12] into superstitious behaviour.
Vyse’s work was explicitly pursued in the Skinnerian tradition described
above, so expanding upon helps to make the connection between super-
stitious and ritualised behaviours explicit. Getting humans and artificial
agents to deal with the same problem allows direct comparison of their
behaviours.

The game takes place on a four-by-four matrix. The basic goal is to move
the avatar from the starting position in the top-left corner to the exit
situated two blocks down and to the right. Five buttons are available:
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four directional ones and a fifth, pressing which does not lead to any
apparent effect. Players are allowed to play the game fifty times, some-
times receiving points upon reaching the exit cell, with the aim being
to get the maximum number of points. The interactive game’s interface
(implemented as a TypeScript web application for the purpose of hu-
man studies not presented here) is presented in Fig. 1. Redundancy
is operationalised as pressing the up or left buttons - pressing them
is unnecessary to reach the exit. Goal-demotion is operationalised as
pressing the fifth ‘'mystery’ button - pressing it has no effect apart from
being recorded. Rigidity is operationalised as repeating (within ten at-
tempts) the same non-minimal path, i.e., one that includes redundancy
or goal-demotion. Rigidity is distinguished from automaticity, which is
operationalised as repeating any minimal path within ten attempts, and
which is understood to result in humans from minimisation of cognitive
effort rather than ritualisation.

Your score is: 4 Attempts left: 3

i

Fig. 1. PathGame implemented as web application using TypeScript

When faced with Vyse’s simpler set-up (only the right and down but-
tons), human players tended to correctly represent the game’s winning
conditions when they were predictable but generated complex and com-
pletely fictitious hypotheses when points were awarded randomly. In our
own pilot studies with human subjects, we found that redundancy, goal-
demotion and rigidity all increased when the probability of obtaining
points at each attempt was low, but automaticity grew as success was
more likely. In effect, people appeared to be learning to form incorrect
associations between the ritualised aspects of their behaviour and ob-
taining points when points were obtained randomly and rarely. As Vyse
noted, ”operant conditioning is not just for rats and pigeons.” ([11])

3 The Cognitive Model (CM)

In order to provide an artificial model of spontaneous ritualisation using
the PathGame paradigm, a computational CM was implemented using
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the Anylogic environment [1]. The goal was to determine whether spon-
taneous ritualisation of behaviour qualitatively akin to that exhibited
by humans could be generated using a simple artificial system designed
to identify non-random patterns, thereby showing a common underlying
basis for the phenomenon. The CM works on the basis of a set of weights
on each of the cells in the matrix, which determine the probability that
the CM will make a particular move when the avatar is in that cell.
The avatar moves around the matrix, with the each move determined
stochastically on the basis of the weights at the currently-occupied cell,
until the exit cell is reached. Depending upon whether a point was ob-
tained at the end of the walk, the weights of the moves made are either
weakened or reinforced.

3.1 Terms and parameters

A Move is regarded here as a movement to another valid cell or the
Goal-Demotion pseudo-activity. Moves are denoted as the four cardinal
geographical directions on a map: N, E, S, W, with Goal-Demotion de-
noted as the question mark: 7. A Walk is defined as a sequence of Moves
leading from the starting position to the exit cell and is represented sym-
bolically as a Path, such as: SSEW?EE. A single Game consists of a
given number of Walks, which for the purpose of this research was al-
ways 50. CM try to gain and store the knowledge about rewards along
the Game.

The game matrix with initial and final move weights is presented in Fig.
2. A Move weight is a floating-point number associated with the specific
move at the specific cell. The move weights are depicted in each cell (with
the obvious exception of the exit cell marked as a circle). The numbers
indicate weights for each direction, with the number in the center being
the Goal-Demotion weight. The Move probability of move X at a cell (3, j)
can be obtained by dividing the corresponding weight ¢x;; by the sum
of all weights > tzs;, where z € {N, E, S, W, 7}. Initial weights are set to
ensure the CM-controlled avatar is likely to reach the exit cell in a small
number of moves (just as is the case with human players). Reinforce-
ment/attenuation during the game changes these weights significantly
leading to very different behaviour depending upon the reinforcement
schedule.

3.2 State diagram

The CM completed 50 walks. After each walk, Reinforcement Learning or
Attenuate Learning is performed according to a random or non-random
schedule. The state diagram of the CM implemented in Anylogic is pre-
sented in Fig. 3.

During the game the CM performs the following steps:

Step 1. Initialise move weights

Step 2. Make random weight-determined moves till end cell reached
Step 3. Schedule determines whether to reinforce/attenuate the walk
Step 4A. Reinforcement learning
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0 0 0 0 0 0 0 0
00.050.475 0.10.050.429 0.10.050.1 0.4750.050 00.032 0.451 0.4530.051.291 0.08 0.032 0.06f# 0.304 0.05 0
0.475 0.425 0.75 0.475 2,084.387 0.139 2173 0.475
0.1 0.1 0.1 0.1 0.08 0.108 0.064 0.1
00.05 0.425| 0.10.050.429 0.10.050.1 0.4250.050 00.30.089 0.064 0.050.398 0.169 0.05 0.06f# 0.34 0.04 0
0.425 0.425 0.65 0.425 4,553.16 0.111 1.302 0.34
0.1 0.1 0.1 0.08 0.183 0.1
00.050.75 0.10.050.65 0.750.050 00.05 10,043.753 0.1 0.05 1,559.862 0.60.050
0.1 0.1 0.1 0.1 0.1 0.1
0.475 0.425 0.75 0.475 0.475 0.425 0.75 0.475
00.050.475 0.10.050.429 0.10.050.1 0.4750.050 00.050.475 0.10.050.425 0.10.050.1 0.4750.050
0 0 0 0 0 0 0 0

Fig. 2. The game matrix with starting move weights (on the left), and the game matrix
with final move weights (on the right)
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Fig. 3. State diagram of CM (in Anylogic)

OR
Step 4B. Attenuate learning
Step 5. While less than 50 walks loop back to step 2

3.3 Reinforcement vs. Attenuation

If a walk is rewarded, reinforcement occurs - the moves in the walk have
their move weights increased as follows: tx;; — txi; X ReinforceRatio,
where ReinforceRatio > 1. In effect, future walks are more likely to
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include the same mowes. Due to stochastic nature of the CM however,
some degree of indeterminacy is maintained, thereby allowing experi-
mentation.

If a walk is not rewarded, attenuation occurs - the move weights con-
tained in the specific path are attenuated: tx;; — txi; X AttenuateRatio,
where AttenuateRatio € (0;1). In effect, in future future walks, the CM
is less likely to perform the same moves, as they were not beneficial.

In addition, to avoid the CM generating very long paths, path length
mitigation is introduced by making reinforcement/attenuation propor-
tional to path length, with the minimal path length of 4 being regarded
as the base value.

4 Testing methodology

Given that on the Skinnerian approach being pursued here, ritualised
behaviour is understood as arising due to accidental operant condition-
ing, it is important to test the CM in two different kinds of scenarios -
random and non-random. In the non-random scenarios, the CM should
be able to identify the winning paths while in the random scenarios it
should generate ritualised behaviour.

4.1 Non-random Scenarios

The non-random scenarios are based on a set of predefined, alternative
rules that reward specific CM behaviour. These rules are based on cells
the path has to go through or avoid or specific buttons being pressed
or not pressed. To test the CM in more complex non-random scenarios,
some include pairs of these rules.

In these scenarios, a path increases the score by one and is reinforced if it
satisfies the rule in force in the game being played. Otherwise, the path
is attenuated and the score remains unchanged. Where a pair of rules is
in force, both have to be satisfied by a path for it to be reinforced and
for the score to increase by one.

BASIC RULES

— CELL-BASED RULES
R1. Avoid the bottom left quadrant
R2. Avoid the top right quadrant
R3. Walk through any 4th row cell
R4. Walk through any 4th column cell

— BUTTON-BASED RULES
R5. Press the up arrow at least once
R6. Press the left arrow at least once
R7. Never press the goal-demotion button
R8. Press the goal-demotion button at least once
R9. Press the goal-demotion button at least twice
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BASIC RULE PAIRS

— R1 and R3: Avoid the bottom left quadrant and Walk through any
4th row cell

— R1 and R5: Avoid the bottom left quadrant and Press the up arrow
at least once

— R1 and RT7: Avoid the bottom left quadrant and Never press the
goal-demotion button

— R2 and R4: Avoid the top right quadrant and Walk through any
4th column cell

— R2 and R6: Avoid the top right quadrant and Press the up arrow
at least once

— R2 and RT7: Avoid the top right quadrant and Never press the
goal-demotion button

— R3 and R4: Walk through any 4th row cell and through any 4th
column cell

— R3 and R6: Walk through any 4th row cell and Press the left arrow
at least once

— R3 and R7: Walk through any 4th row cell and Never press the
goal-demotion button

— R4 and R5: Walk through any 4th column cell and Press the up
arrow at least once

— R4 and R7: Walk through any 4th column cell and Never press the
goal-demotion button

— R5 and RT: Press the up arrow at least once and Never press the
goal-demotion button

— R6 and R7: Press the left arrow at least once and Never press the
goal-demotion button

4.2 Random Scenarios

In these scenarios, reward and the associated reinforcement/attentuation
schedule are independent of the path used and depend merely upon the
Reinforce Probability parameter, which gives the stochastic probability of
reward /reinforcement.

5 Results

5.1 Results for Non-random Scenarios

The goal of these scenarios was to test whether and to what degree the
CM was able to extract rules knowledge from the received rewards and
to then use that knowledge to increase the number of points obtained
over the length of the game. As such, the scores obtained by the CM
have to be compared to the scores obtained without any reinforcement
- these show how difficult the rules are to satisfy purely randomly and
differ between the different non-random rules tested.

The scores obtained by the CM for the basic rules and their pairs are
presented in the Fig. 4. These are the mean scores for 1000 games of
50 walks. Each game is initialized in the same way (including the same
initial move weights) and with the following parameter values:

7
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— ReinforceRatio = 9
— AttenuateRatio = 0.8
— Path Size Mitigation applied linearly (see section 3.3 for details).

The rules tested proved to vary greatly in terms of how easy they were
to happen upon randomly, with the rule pairs generally proving more
difficult. This pattern also held for cases where reinforcement was in
place. However, in every case tested, reinforcement allowed the CM to
obtain a clearly increased average score. In fact, it was with rule pairs
that the effect of reinforcement was the most striking. Of course, the
difficulty of individual rules could be modified by altering the initial
weights - for example, pressing the goal-demotion button could be made
much more likely, thereby making R9 much more likely to be satisfied
randomly. So, not much can be read into individual rules. However, it
is the overall pattern of reinforcement increasing scores that shows that
for the set of rules we tested, the reinforcement learning was successful
and that this CM is a satisfactory model of pattern-seeking behaviour.
Having observed this behaviour, we could go on to test how this CM
behaved when presented not with predictable scenarios but with purely
stochastic ones.

Mean scores: red circle = no reinforcement, green triangle = with reinforcement

A
A

0 20 40 60 80 100

Percentage of maximum score

Fig. 4. CM mean scores for the individual rules and selected rule pairs, comparing
reinforcement with no reinforcement
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5.2 Results for Random Scenarios

Having established that the CM is capable of learning non-random rules,
it was necessary to check whether this was sufficient for the CM to gen-
erate ritualised behaviour when presented with random scenarios, as op-
erationalised in terms of redundancy, goal-demotion and rigidity (see
section 2).
CM configuration is as follows:

— parameter ReinforcementProbability €< 0:0.01:1 > - 101 values

— 1000 Games per each ReinforcementProbability value.
ReinforceRatio = 9
AttenuateRatio = 0.8

— Path Size Mitigation applied linearly (see section 3.3 for details)
A total of 101 000 Games were run. Each simulation consisted of 50 time
steps (i.e., 50 Walks or Paths). Rewards were awarded stochastically
based on the value of ReinforcementProbability and independently of the
path used.
The metrics for the four characteristics obtained from the experiments
are presented in Fig. 5.
Goal-Demotion - as shown in the upper left plot in Figure 5 - occurs in
the majority of paths when reinforcement is rare but drops away and is
almost never seen in cases where the probability of reinforcement is above
0.3. This is in line with human behaviour, where it has been observed
that goal-demotion also is much more common when paths are rarely
reinforced.
Redundancy - as shown in the upper right plot in Figure 5 - is very
high at low ReinforcementProbability values - occurring in the majority
of walks - but then drops towards zero as the probability of reward
increases, similarly to goal-demotion. This pattern has also been observed
in human players.
Automaticity - shown in the bottom left plot in Figure 5 - is not a
necessary characteristic of ritualised behaviour but was of interest to
us given the methodology used. It behaved in the opposite manner to
goal-demotion and redundancy, in that it was almost non-existent when
reinforcement was low and quickly came to dominate at higher reinforce-
ment probabilities. This pattern is also analogous to the one observed
with human players.
Rigidity - shown in the bottom right plot in Figure 5 - proved to be
the problematic measure. As can be seen, it is quite rare at high Rein-
forcementProbability values but is completely absent when reinforcement
drops to zero. As such it will be discussed at some length in the final
section. Rigidity is regarded here as the repetition of a non-minimal path
within the ten most recent walks. It is low with low ReinforcementProb-
ability values (bottom right plot in Figure 5). Due to rare learning the
paths tend to be quite long and very stochastic, so they rarely repeat
subsequently at all. Rigidity rises quickly with the increase of Reinforce-
mentProbability and stabilizes obtaining about 6-7 occurrences out of 50
with ReinforcementProbability € (0.25,1). It could be interpreted that
the paths tend to be more focused and repetitive, both minimal ones
that conform to Automaticity and non-minimal ones that conform to
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Fig. 5. Average Error Management metrics versus ReinforcementProbability

Rigidity. It is also worth noting that Rigidity drops slightly within the
mentioned range, probably due to Automaticity raising, that overtake
also non-minimal repetitions.

6 Discussion

The cognitive model was able to learn simple rules in the non-random sce-
narios, thereby showing that we developed a simple learning model that
could be usefully compared to the behaviour generated by humans. When
presented with random scenarios, it spontaneously generated redundant
and goal-demoted behaviour characteristic of rituralised behaviour, with
both redundancy and goal-demotion occurring more commonly in con-
ditions that also favour that behaviour in humans. Rigidity proved more
elusive. While random scenarios did indeed generate rigidity, they did
not do so in the pattern met with in humans, where rigidity tends to
co-vary with goal-demotion and redundancy. However, this difference in
results is to be understood in terms of the limitations of the learning
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model used rather than as a problem with the main hypothesis. The
reason is that, when tested, humans tend to rigidify their behaviour in
a manner that was not open to the CM tested here. Specifically, they
tend to form series of paths that they then use repeatedly, believing that
the rules determining success change from walk to walk in a set pattern.
In effect, they rigidify not over individual paths but over sets of them.
This was not possible for the CM we created, as it has no memory of
paths used as its behaviour is merely determined on the basis of the move
weights.

Keeping in mind this significant limitation, it is possible to conclude that
the study has been successful in showing that ritualisation of behaviour,
or at least some aspects of it, is simply caused by accidental operant
conditioning working in a scenario that is unpredictable - in line with
the explanation that Skinner gave for superstition. As such, superstition
and ritual must be seen as having at least in part a common epistemic
basis that means that we should expect such behaviour in any system
capable of learning when it is placed in the relevant set of conditions.
This means in particular, that supernatural beliefs that commonly are
connected to rituals are not basic to them, nor is anxiety necessary to
generate ritualised behaviour.

The behaviour of the CM is also interesting in view of error management
theory. When dealing with relatively easy random scenarios in which
success was highly likely, the CM rapidly ended up automatising its
behaviour while low success rates led to much greater innovation. To
fully explore this aspect of ritualisation, however, it would be necessary
to make each move costly thereby putting the CM in a position where it
has to decide whether to use a more costly non-minimal path that may
in some scenarios be required to earn points.

In future modelling work we will explore spontaneous ritualisation of
behaviour using more complex cognitive models capable of rigidifying
over sets of paths and then create an agent-based model to explore the
social conditions necessary to sustain a ritual-tradition.

11



[11]

[12]

Bibliography

AnyLogic: Simulation Modeling Software Tools & Solutions (2023),
https://www.anylogic.com/

Beck, J., Forstmeier, W.: Superstition and Belief as Inevitable By-
Products of an Adaptive Learning Strategy. Human Nature 18,
35-46 (03 2007)

Boyer, P., Liénard, P.: Why ritualized behavior? Precaution Systems
and action parsing in developmental, pathological and cultural rit-
uals. Behavioral and Brain Sciences 29(6), 595 — 613 (2006)
Foster, K.L., Kokko, H.: The Evolution of Superstitious and
Superstition-Like Behavior. Proceedings of The Royal Society B:
Biological sciences 276, 31-37 (10 2009)

Haselton, M., Buss, D.: Error management theory: A new perspec-
tive on biases in cross-sex mind reading. Journal of personality and
social psychology 78, 81-91 (02 2000)

Heltzer, R., Vyse, S.: Intermittent Consequences and Problem Solv-
ing: The Experimental Control of ” Superstitious” Beliefs. The Psy-
chological record 44 (04 1994)

Killeen, P.: Superstition: A Matter of Bias, Not Detectability. Sci-
ence (New York, N.Y.) 199, 83-90 (02 1978)

Ono, K.: Superstitious behavior in humans. Journal of the experi-
mental analysis of behavior 47, 261-71 (06 1987)

Skinner, B.F.: Superstition in the pigeon. Journal of experimental
psychology 38 2, 168-72 (1948)

Talmont-Kaminski, K.: Malinowski’s magic and skinner’s supersti-
tion: Reconciling explanations of magical practices, chap. Mental
culture: Classical social theory and the cognitive science of religion,
pp- 98-109. Acumen Publishing (01 2012)

Vyse, S.A.: Believing in magic: the psychology of superstition. Up-
dated edition. New York, Oxford University Press. (2014)

Vyse, S.: Behavioral variability and rule generation: General, re-
stricted, and superstitious contingency statements. The Psycholog-
ical Record pp. 487-506 (01 1991)



