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Abstract. In this paper, we present the methodology and results of the first test 

of the front-end of a larger protocol guiding a participatory modelling process to 

rapidly adapt empirical legacy ABMs to effectively respond to policy queries. 

The ultimate goal of the research is to create a process that could be completed 

in timespans of weeks rather than several months. The five stages of the front-

end protocol tested here cover the formal elicitation of the policy query, the co-

construction with the policy maker of requirements for an adapted ABM to an-

swer it, and the process leading to the re-coding of that model. The protocol is 

designed for the involvement of four actors: a policy maker; a knowledge engi-

neer; a modeller; and a programmer.  

The paper concludes with a description of the key barriers identified by the test. 

These barriers include problems of re-running the legacy ABM from existing 

code due to changes in software versions since its original development; differ-

ences in coding styles between the original developers and the modelling team 

charged with its adaptation; limits to the descriptive power of ODD; dataset con-

fidentiality and differences in data processing methods; time pressures resulting 

in design/coding decisions that might lead to errors or model artefacts, etc. We 

suggest investment in professional model curation as a way to overcome these 

barriers. The goal of which would be the identification, preparation, and mainte-

nance of legacy ABMs in readiness for their rapid adaptation by modelling teams 

to meet future policy maker requests. 

Keywords: empirical ABM; policy support; participatory modelling; rapid 

model adaptation; model curation. 

1 Introduction 

This paper reports on the early stages of a work package, from a large-scale modelling 

research project funded the Scottish Government, which seeks to answer the research 

query: 

─ How quickly can an empirical legacy ABM be adapted to produce a valid model to 

answer policy makers’ urgent policy queries?  
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The frequent mismatch between research models and what policy makers need for 

evidence-based decision making is already well documented and stretches backs many 

years (see for example [1]). The reuse of legacy models is especially unlikely outside 

their original purpose [2]. Whilst developing trust in the use of ABM is a work in pro-

gress [3], participatory modelling approaches have not yet provided the complete solu-

tion to this mismatch as revealed by the lack of demonstrable impact on decision mak-

ing by 60 published participatory modelling exercises between 2003 and 2017 [4]. 

When it comes to rapid response modelling, the problems are somewhat greater since 

there is also an obvious tension between the speed at which models can be developed 

to a suitable level of validity and the speed at which urgent policy answers are needed 

to emerging opportunities and threats demand, c.f. Covid-19 [5].  

Our research seeks to develop a protocol for a participatory modelling  process (sup-

porting active participation in multiple phases from query specification and co-design 

to model use [anonymised reference]) that can be used to rapidly adapt legacy ABMs 

to act as “good policy advice models” [5] with respect to answering policy makers’ 

urgent policy queries. By “legacy” we mean an ABM that has been built in the past by 

modellers who might or might not be part of the organization that is seeking to adapt 

it. In this paper, we describe the methodology and testing of the front-end part of this 

protocol, covering the elicitation of the policy query, the co-construction with the pol-

icy maker of requirements for an adapted ABM to answer it, and the stages up to and 

including the initial re-coding of that model. The approach we present contrasts to other 

approaches which attempt to accelerate policy model development. Such alternative 

approaches may focus on facilitating rapid “informal” coupling of component sub-mod-

els via stakeholder participation [6]; improving the speed of access to empirical data by 

reusing open data, for example at global scale levels, to replace missing local scale data 

needed for humanitarian disaster responses [7]; or on developing modelling shells or 

toolkits containing pre-existing model components or agents that can be easily recom-

bined for bespoke modelling activities [8, 9].  

2 The Front-End Protocol 

Our front-end protocol as it currently stands includes seven process stages and is de-

signed for the involvement of four actors: the policy maker; the knowledge engineer; 

modeler; and programmer (c.f. Section 2.12, Fig.2 in [10]). Inspired by Castro et al.’s 

six-step1 mapping-mediated, knowledge engineering process for ontology development 

[11], the seven stages (Fig. 1) are: 

─ Stage 1 – the modelling team receives from the policy maker makes an urgent re-

quest for support in answering a new, emerging policy query; 

─ Stage 2 – the modelling team identify an appropriate legacy ABM that could be re-

designed and repurposed to respond to the query; 

 
1 Castro’s six steps were: purpose identification; reusable ontology identification; domain analy-

sis and knowledge acquisition; iterative informal ontology development; formalization of the 

ontology; and evaluation. Our protocol does not include “evaluation” yet. 
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─ Stage 3 – the knowledge engineer uses the ODD (Overview, Design concepts and 

Details) [12] documentation of the legacy ABM to develop a core causal loop model 

[13] of it; 

─ Stage 4 – the knowledge engineer interviews the policy maker and uses the causal 

loop model in two ways, i.e., as: i) a medium of model communication - to present 

an overview of the ABM which includes an explanation of its key ontology and dy-

namics; and ii) a contrived knowledge elicitation method [14] for eliciting both ex-

plicit and tacit knowledge from the policy maker - to facilitate the policy maker to 

expand the core causal loop model in order to identify and agree upon the new on-

tological elements and causal relationships required for the model to answer their 

policy query.  

─ Stage 5 – the knowledge engineer converts these requirements into a formal require-

ments specification document for the target ABM; 

─ Stage 6 – the modeller converts the requirements specification document into a de-

sign specification explaining how the legacy ABM needs to be adapted, and identi-

fying any new data sets that should be used;  

─ Stage 7 – the programmer uses the design document to then recode and adapt the 

target ABM.  

 

Fig. 1. The flow of 7 stages in the current front-end protocol within a larger participatory mod-

elling process. Light grey lines indicate parts of the protocol still to be developed, including code 

testing, verification, validation and results visualisation. 

3 A First Test of the Protocol 

The first test of the front-end protocol involved adapting a legacy ABM developed at 

the Authors’ organisation but whose lead developer now works elsewhere: RISC [15]. 

This empirical ABM models the impact of different Brexit scenarios on the future num-

ber of small, medium and large cattle farms in Scotland. Very broadly, decisions to 
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expand, contract or maintain herd sizes by farms are made according to different deci-

sion models depending on the type of farm. Most relevant to the examples in this article 

is that some farms’ decisions are based on their own or other farms’ calculations of 

current profit (for a description of the other decision models, see Section 3 in [15]).  

 

 

Fig. 2. Top inset: A layer of the core causal loop model, based on the ABM’s ODD, related to 

farm profit calculations as presented and explained to the “policy maker”. Bottom: Core model 

extensions (enumerated yellow nodes and arrows) co-constructed with the “policy maker” during 

the interview. Black arrows signify directed, directly proportional relationships between two 

nodes; red ones, inversely proportional relationships. Causal loop models visualised in VUE [16]. 

A mock participatory modelling process was set up whereby the role of knowledge 

engineer, modeller and programmer were played by staff from the organisation who 

had had no previous involvement in the model (authors 1, 2 and 3, respectively) but 
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were skilled in their respective roles. Author 4, due to their working relationship with 

the legacy ABM and consequent knowledge of both the domain and model (although 

not the main developer), played the role of “policy maker” (for a fictitious “Cow Policy 

Unit”) but was a scientist, unskilled in that role. The first three authors had no prior 

warning as to what the fourth author would say in their interview, other than the fact 

that the latter would want adaptations to the ABM. It is for this reason that our mock 

process began at Stage 3, continued to Stage 7 inclusive. In calendar days, this first test 

took two months to complete representing approximately 15 person days of work.    

3.1 Stage 3 – Development of the Causal Loop Model.  

The ABM’s ODD was used by the knowledge engineer to develop a systems represen-

tation of the ABM in the form of a core causal loop model. This model was developed 

in several layers representing different parts of the model. The layer of this core model 

that represents the calculation of farm profit levels is illustrated in Fig. 2 (Top inset). 

3.2 Stage 4 – Interview with “Policy Maker” and Co-Construction of 

Extensions to the Causal Loop Model 

The core model was presented and explained, layer by layer, at the start of the meeting 

with the “policy maker”. The process of eliciting the policy query and model extensions 

required to answer it was carried out via co-construction of an extended version of that 

causal loop model with the “policy maker” (see Fig 2, Bottom, for the elicited extended 

causal loop model). The method of co-construction was driven using a semi-structured 

interview script that was adapted in real time during the interview to link to the policy 

query and the ongoing adaptation of the causal loop model.  

The interview questions began with asking the “policy maker” an initial question 

about the key issues currently impacting the cattle sector that were of major concern. 

Their responses actual Brexit trade conditions, the war in Ukraine and the pandemic 

were added to the bottom of the causal loop model, represented in Fig. 2 (Bottom) by 

the yellow boxes R0.1, R0.2, and R0.3 respectively. Next, new ontological components 

of the model were identified by asking a follow up question: what they thought were 

the most important impacts of each of the key issues on the sector. Whilst the “policy 

maker” answered, the causal loop model was adapted by the knowledge engineer in 

real time, whilst seeking the former’s approval for those changes. An example of such 

incremental co-construction of the model is the case of R0.2 war in Ukraine (see Fig. 

3). When the “policy maker” answered the follow up question, above, by responding 

“the war in the Ukraine raises the price of fossil fuels”, the resulting contemporaneous 

change in the model was the addition of nodes R0.2 “Ukraine” and R1.4 “fossil fuel 

prices” and their connection by a directed black arrow, R1.4, signifying that the former 

causes an increase in the latter (Step 1, Fig. 3).  

Development of the model continued through a forward-chaining query selection 

strategy analogous to the forward-chaining deductive processes employed in expert 

system inference engines. That is, follow up questions were posed to the “policy maker” 

which were equivalent to “if X is known, then what happens as a result?”.  In this case, 
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once the concept of “fossil fuel price rises” appeared in the model, the following ques-

tion was then asked by the knowledge engineer: “what is the impact of fossil fuel price 

rises?”. The answer that “it increases the price of feed” produced a new R1.4 arrow 

linking fossil fuel prices to the existing model node “price of feed” (Step 2, Fig. 3), 

already linked to the farm profit levels calculation.  

 

Fig. 3. Step-by-step incremental adaptations to the core causal loop model (all enumerated yellow 

nodes and arrows) with respect to the calculation of farm profits resulting from the interview 

(purple nodes and other arrows are from the core model). Alphanumeric Rx.y indicates the related 

specific requirement in the Requirements Specification documentation (see Stage 5 below).  

When the “policy maker” then subsequently added that fossil fuel price rises also made 

the cost of growing their own feed increase, a new connection leftwards was made from 

the fossil fuel price node to a new R1.4 node “cost of growing their own feed” (Step 3, 

Fig. 3). Further forward chaining queries from this new node resulted in the creation of 

a R1.4 node “amount of own feed” influenced by both an original node in the model 

“amount of own land to grow feed” and the new node “cost of growing their own feed” 

(Step 4, Fig. 3). Finally, the link to profit calculations via the cost of feed was made 

when the “policy maker” identified that when the amount of own feed is high, the cost 

of [bought-in] feed decreases (Step 5, Fig. 3).  A similar second and third tranche of 
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forward-chaining queries were then asked in order to adapt the causal loop model to 

include both new performance indicators and policy instruments they wanted to test. 

By the end of the interview (duration 1 hour), the user story, main policy query and 

sub-queries had been identified based on the extensions to the causal loop model (see 

Fig. 4, Top left). 

3.3 Stage 5 – Requirements Specification 

The adapted causal loop model, supported by interview notes, was used to write a re-

quirements specification document (Fig. 4, Top right and Top left) based on an agile 

project management [17] template2. Five requirements for modifications to existing 

model calculations, three new performance indicators and three new policy instruments 

were documented.  

3.4 Stage 6 – Design Specification 

The modeller used the requirements specification document (including the core and 

extended causal loop models), the ABM’s ODD and the original code to specify a de-

sign for the programmer to follow to recode the legacy ABM. Fig. 4, Bottom, shows 

the level of description provided by the modeler for requirement R1.4.  

3.5 Stage 7 - Coding 

The programmer used the design spec and original documented code to adapt the legacy 

ABM code (Fig. 5). On completion, they added their comments in Section 1.4.3 of the 

developing requirements and design document (Fig. 4, Bottom).  

4 Conclusions  

In this paper, we have presented the methodology and outputs of the first test of five of 

seven stages of a larger protocol guiding a participatory modelling process to rapidly 

adapt empirical legacy ABM to effectively respond to policy queries. The goal is to 

find out what might be needed to be done to complete such a process in timespans of 

weeks rather than several months. The testing of this part of the front-end protocol and 

the feedback discussions between the four “actors” involved in it, revealed the follow-

ing issues affecting the possibility of rapid adaptation of legacy ABM even before the 

critical processes of model verification, validation and participatory use are consid-

ered: 

 

 
2  See template provided by https://reqtest.com 
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Fig. 4. Top left: The first page of the requirements documents including the user story. Top 

right: requirements applying to the adaptation of the farm profit calculations and addition of new 

performance indicators. Numbers 1.x link to the nodes and arrows enumerated R1.x in Fig. 3. 

Bottom: The design specification (Section 1.4.2) added to requirement R1.4 by the modeller; 

and the programmer’s notes on completing the coding adaptations (Section 1.4.3) 
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 Choosing the right machine on which to set up the code and run the legacy ABM 

was not straightforward. The legacy ABM used an old version of NetLogo, i.e., 

6.1.1., with this version information contained in its code. However, initial attempts 

to run it on the programmer’s Mac failed because even though version 6.1.1 could 

be installed, the vid extension (which was not needed) did not work because of lack 

of access to the correct Java versions that could, at the time, be installed on the Mac. 

Running the model on Linux, instead, worked.  

 Demonstrating the replicability of the results of the legacy model will be a key part 

of verifying the adapted ABM. Unfortunately, the legacy ABM uses confidential 

spatial datasets for which the team would need to obtain new permissions, and users 

would require a decryption key before carrying out simulations.  

 Time was required to understand how the original data used was wrangled - a process 

that requires easy access to original data processing scripts and metadata. 

 No ODD of a complex ABM will provide an exhaustive overview of the coded pro-

gramme it represents. There might therefore be small inconsistencies in them or 

missing descriptions of lower-level components, when compared with the code. It 

was necessary for the modeller to spend more time, therefore, to cross-check the 

ODD, the code and the causal loop model, to understand how specific parts of the 

legacy model were implemented so that design suggestions could be produced.  

 Understanding the code was made harder and more time consuming by differences 

in coding styles between the programmer/modeller and the original ABM developer. 

For example, the latter saved results data as it was being produced, rather than at the 

end of simulation which was the preferred style of the programmer adapting the leg-

acy ABM. There were also differences in naming conventions. 

 Differences in such styles required the programmer to make a conscious decision as 

to whether they i) change their own style in favour of the style of the original pro-

grammer; ii) use their own style and have a potentially confusing mixture of pro-

gramming styles in the adapted model, or iii) redo the legacy model to make it con-

form to their coding style, ensure coding consistency and improve ease by which 

future adaptations might be made.   

 When it came to design specifications, the modeller noted that their choice of how 

to derive data would have a significant impact on the complexity or simplicity of the 

adaptations needed. An example of this is the specification of a user-input slider for 

deriving the cost-of-own-straw variable in R1.4 (see Fig. 5). Requiring this var-

iable to be exogenous rather than calculated within the model using a new function, 

simplified the coding implementation. Strict, short time limits for adapting the model 

will thus tend to lead to simple, rather than more complex, adaptations. Also, unless 

we verify them with the policy maker and test the impacts of these decisions on the 

results generated by the adapted model, there is a risk that errors or model artefacts 

might creep in [10]. Naturally, this adds time to adaptation process. 

 Linked to the above is the time-pressure-induced temptation to adopt a “quick and 

dirty” approach to design and re-coding of the adapted ABM, rather than a slower, 

more measured one. An example of this tension was identified by the team in the 

impact of the decision to split the modeller and programmer roles. This certainly 

slowed the process of model adaptation down and there was agreement that it could 
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have been done far quicker if the roles had been combined. However, it was also 

recognized in feedback discussions that, for example due to the complexity of the 

datasets being managed in the empirical ABM, such a split added another layer of 

quality control to the process by providing an opportunity for feedback (provided by 

the programmer) on the quality of the design specifications and for verification of 

the subsequent coding (provided by the modeller).  

to-report calculate-profit-dairy 
…  
;; R1.4 adaptation -  Design spec: then add to the end of the line beginning “set 
profit-dairy …” a snippet of code that deducts the own straw and own grass cost.   
set profit-dairy (income-per-cow * cattle-dairy - p-straw * q-feed-straw - p-hay * q-
feed-grass 
      - (cost-own-straw * own-feed-straw-per-cattle-dairy * cattle-dairy)  

      - (cost-own-grass * own-feed-grass-per-cattle-dairy * cattle-dairy)) 
                             ;; new code – req R1.4 
  ] 
  report profit-dairy 
end 

@#$#@#$#@ 
GRAPHICS-WINDOW 
…. 
;; R1.4 adaptation - design spec: add sliders called cost-own-straw and cost-own-grass 
to the interface 
SLIDER … 
cost-own-straw 
cost-own-straw 
306 - 143 
306 + 143 
306.0 
 … 

HORIZONTAL 

Fig. 5. Examples of the coding changes carried out for R1.4 The inclusion of fossil fuel costs. 
Top: changes to set_profit_dairy; Below: the required cost-own-straw GUI slider. 

n.b. code has been edited for presentational purposes.  

4.1 Model Curation 

The above issues suggest that if institutions are to be able to rapidly adapt legacy mod-

els to meet urgent policy queries in a matter of weeks rather than months, they will 

need to have a curated library of legacy models for responding to such queries. The 

nature of the barriers identified by our test even at such early stages of model adaptation 

- before phases of recalibration, verification, and validation - means there will probably 

not be enough time to respond, if such a library does not exist. Such a library will re-

quire an institution (or networks of institutions) to invest in model curation teams re-

sponsible for the curation of legacy models in preparation for possible future rapid 

adaptation requests from policy makers. As already proposed to support digital engi-

neering enterprises, model curation involves “lifecycle management, control, preserva-

tion and active enhancement of models and associated information to ensure value for 

current and future use, as well as repurposing beyond initial purpose and context” 
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which require professional curators ([2] p235). Such curators could ameliorate some of 

the issues covered in the section above by adopting the following roles. They would:  

─ identify high quality, legacy ABMs that have the potential to be of use in a specified 

range of policy areas. 

─ replicate the behaviour of the legacy ABM (rebuilding them if the identified legacy 

ABMs are not following the chosen coding style and documentation standards). 

─ ensure that the replicated legacy models and ancillary software versions are updated 

so that the legacy ABM can be run on each new generation of in-house machines. 

─ manage and update data licenses and permissions. 

─ continuously assimilate new data, ensuring the legacy ABM remains reflective of 

contemporary circumstances (e.g. extending “historical” datasets to the present day). 

To achieve this, sources of model data and data cleaning and formatting (data wran-

gling) procedures would have to be thoroughly documented. 

─ act as a trusted recipient and handler of confidential data needed for including sen-

sitive information in policy ABM (a need identified in [5]). 

─ provide continuous professional development (CPD) training on the ABMs under 

curation to knowledge engineer/modeller/programmer teams.  

─ ensure all modelling teams are employing in-house coding style and documentation 

standards for current and future ABM development (including code layout, naming 

conventions, code annotation and metadata recording). 

─ verify in-house ABM ODDs, backed up by formal ontological descriptions.  

─ maintain institutional memory of in-house ABM should the developers leave the or-

ganisation.  

─ promote, within the ABM community, requirements for legacy models if their de-

velopers want them to be used to support rapid response model adaptation using our 

protocol. For example, requirements would include the provision by the ABM de-

veloper of ODD documentation that has been verified against the model code, as 

well as clear documentation of code and of any data wrangling. Since the causal loop 

model of RISC provided our modeller (responsible for the design specification) extra 

clarity about the dynamics of this ABM, the provision of such a representation along-

side the ODD might also be considered a useful requirement.   

─ curate reusable modules, such as those being considered by the ‘Reusable Building 

Blocks’ community3, to allow the composition of ABMs to fit policy queries for 

which there are no suitable legacy ABMs.  

Model curation activities would require significant financial resources to cover work 

that would not normally be included in research grants. A possible solution would be 

to seek investment under “underpinning capacity” funding to boost the type of trusted, 

rapid, policy-responsive large scale modelling called for by Squazzoni et al. [5]. 
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3  https://bit.ly/RBB_template ; https://bit.ly/RBB_forum 
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