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Abstract. We are considering ABM model consisting of an electronic
autonomous intelligent vehicles (AIV) �eet operator and individual vehi-
cle users. The �eet is large enough so that its decisions have a signi�cant
impact on on the entire transportation network. The normal vehicle users
are observing the decisions made by the AIV operator and adjust their
behavior accordingly. As a result, the �eet operator also needs to adapt
to the changing environment. The goal of this research is to propose an
ABM model for the optimal selection of routes and allocation of elec-
tronic vehicle charging stations that minimizes the overall congestion int
the transportation network.
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1 Introduction

Transportation systems generate several externalities (such as congestion) that
a�ect all parties involved in a multilateral manner. In this research, we focus on a
scenario with two types of agents: (1) individual vehicle users and (2) an operator
of a �eet of electric autonomous intelligent vehicles (AIV). The goal of the �rst
group of agents is to minimize travel times, while the �eet operator aims to
minimize the costs of vehicle routing and the selection of locations for electronic
vehicle (EV) charging stations. We assume that the size of the AIV �eet is large
enough that its decisions have a signi�cant impact on the overall e�ciency of the
network. An example could be an AIV solution controlling the entire logistics
network within a city or an AIV network operating in a designated area such as
a large industrial installation (e.g., a mine or a chemical plant). Since the other
agents adapt to the current situation, the �eet operator needs to consider how
these agents will adapt to its decisions and respond accordingly.

There is a vast body of literature on modeling the behavior of agents in
transportation systems � the most recent literature reviews can be found in
[1]. These authors point out that the literature can be divided into three major
approaches: (1) transportation network modeling, (2) consumer behavior model-
ing, and (3) alternative formulations of transportation systems. In this paper, we
consider agents within a transportation network. [5] point out that the types of



2 P. Szufel;

Fig. 1. A sample initial allocation of agents with 3 depots (K = {1, 10, 21}) obtaining
by solving the decision making model of the AIV �eet operator. The 45-degree inclined
numbers represent the number agents passing each edge. Note that the agent load
has been evenly distributed across all intersections to minimize the congestion. The
proposed locations of vehicle charging stations include vertices 22, 25 and 5. This is an
initial travel plan of the �eet regulator. In the next turn normal commuters start to
adaptively update their routes a new equilibrium is being formed.

agents discussed in the existing models include: single vehicles, communication
operators, drivers, travelers, environment, toll operators, or public authorities.

In this paper we are considering a �eet operator that has several independent
depots that uses electric autonomous intelligent vehicles for transportation of
goods. We will analyze the behavior of single agents (driving non �eet cars) as
well as the decision of the AIV �eet operator. The agent-based approach in this
research is required due to the known nonlinear e�ects in transportation systems,
e.g. see [3].

2 Model

In the paper we are considering an agent-based model with the following agent
classes: (1) AIV �eet operator; (2) AIVs that can perform local adaptive route
optimization; and (3) individual drivers observing the tra�c (eg. via a mobile
app) and adaptively, individually adjusting their routes (in each simulation run
agents are assigned a pair of points to represent their origins and destinations).
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In the proposed model, �rstly, the AIV �eet operator performs planning for its
vehicle �eet. The operator's plan is constructed by solving a MILP optimization
problem. Once the plan of the �eet operator is implemented, other vehicle users
(not being a part of AIV �eet) are observing the situation on the streets and
perform ad-hoc route planning. There is an interdependence between decisions
of all participants.

Decision making of the �eet operator. The approach taken by the �eet
operator is based on a classical approach in the literature for the multi-depot
vehicle routing problem (MDVRP) [4]. The goal of the operator is to minimize
routing costs calculated as the product of distance and �ow of goods, as well as
driving times to the charging stations.

Let us represent the transportation network as a directed weighted graph
G = (V,E) where V is a set of vertex indices (a vertex index is denoted by v ∈ V )
and E is a set of edges (denoted by e ∈ E , e = (v1, v2) where v1, v2 ∈ V ) and the
unit costs of transportation on the edge e are denoted as ce. K represents a set of
depots denoted by k ∈ K where |K| denotes the number of depots. Bottlenecks
in a transportation network can occur both on edges as well on vertices. The
congestion on intersections is increasing non-linearly with the number of vehicles.
The total costs of a logistic operator can be represented as the following cost
function that we minimize:

min
∑
e∈E

∑
k∈K

cexek + α
∑
v∈V

 ∑
k∈K,e∈Ein(v)

xek

2

+ β
∑

zck (1)

The decision variable xek represents the number of agents traveling between the
origin location and the places where goods are delivered while zck represents
the capacity of a charging station c ∈ C assigned to vehicles from the depot
k ∈ K. zck is a binary variable representing a penalty when zck > 0. α and β
are weighting parameters. Finally, Ein(v) represents a set of edges incoming to
v. The goal function presented in Eq. 1 is minimized under a standard set of
conditions ensuring �ow in the graph. Sample results for a randomly generated
network have been presented in Fig. 1.

This routing plan is subsequently executed by a �eet of agents traveling
around the city.

Decision making of individual driver. Each non-�eet driver is represented
by an agent who is independently making their routing decision. Drivers have
travel plans � a list of points-of-interests (POIs) to be visited during a day
along with their order. The drivers cannot coordinate their decisions but they
have online information about the current tra�c. Each driver chooses a route
with the shortest estimated time of arrival.

The speed of vehicles on a particular edge e is modeled depending on the
density using the well-known Lighthill-Whitham-Richards equation [2]:

u(i) =
(
u(i)
max − umin

)
·max

(
1− ρ(i)/ρ(i)max, 0

)
+ umin (2)
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where umin is a minimum possible speed (we assume 1 km/h), and ρ(i) is the
tra�c density on edge e(i). When arriving at an intersection v ∈ V an individual
driver agent is observing the current state of the system and is choosing a route
with the shortest driving time.

In the proposed decision making process there is a decision interdependence.
Firstly, the AIV �eet operator is solving the optimization problem de�ned in
the Equation 1. This sets the routes for AIV �eet participants. The individual
drivers are observing the tra�c and individually adjust their routes.

3 Preliminary results and Conclusions

The ABM model has been implemented in the Julia programming language and
some initial simulation experiments have been carried out. An ABM simulation
model has been constructed and con�gured with the initial behavior of agents
from the MILP model. Preliminary results show that agents by making making
individual decisions can increase the overall system e�ciency. The increase of
optimality value is observed regardless of a known tendency of transportation
systems of to converge towards a non-e�cient Nash equilibrium.

The further research will focus on modeling of the full decision-making pro-
cess with the full feedback loop between decisions of individual agents and deci-
sions of the market regulator.
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