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Abstract. We demonstrate a working framework for the automatic record-
ing of provenance and metadata for primarily agent-based models that
could easily be adapted to the other modelling environments. We dis-
cuss the need for such a framework, the philosophy behind the design
we adopted, the implementation, discuss the results and demonstrate a
simple tool for for tracing bad data through a provenance graph.
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1 Introduction

Replication of social simulation results has been highlighted as a significant issue
for the agent-based modelling (ABM) community for a number of years (e.g. [?]).
The paper that forms the basis of this work ([?]) shows that the analysis of the
outputs of the model can potentially be just as complex a process as developing
and running the model itself. Analysis of outputs is no less difficult to replicate
unless adequate records are kept. The TRACE protocol [?,?] provides some
guidance highlighting the need to keep a notebook of the analysis done and a
standardised approach to making that notebook. There are also many scientific
workflow tools, such as Snakemake [?], NextFlow [?], Kepler [?] and Taverna [?].
However, since these are workflow tools, the focus seems to be on automation
and repeatability rather than provenance, which, if it is included, seems not to
be the primary purpose of the described tools. There are exceptions to this,
such as the open provenance framework [?], implemented in [?] with yet another
workflow control langauge [?], but such tools do not seem to have flourished and
seemingly for agent-based models are non existent.

One of the lessons learned from the replication exercise in [?] was that, for the
purposes of replication, more detailed guidance on the information that should
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be recorded is needed. Since recording such metadata is tedious (and error-
prone) for humans, any such guidance should be accompanied by specification
of tools that could be used to support the process. In the ideal world, the process
of recording provenance metadata would be completely automated, essentially
providing a complete graph from data (including their sources) through appli-
cations (model, scripts and analysis tools, including versions thereof) to result.

The output analysis replication in this paper concerns earlier work with
FEARLUS-SPOMM, which is a coupled ABM of agricultural decision- mak-
ing and species stochastic patch occupancy metacommunity model that has been
used to explore incentivisation strategies to improve biodiversity [?,7]. Belonging
to the ‘typification’ class of social simulations [?], this work involved the analy-
sis of the outputs of approximately 20,000 runs of the model using a number of
techniques aimed at demonstrating nonlinearities in the relationship between in-
centivisation and biodiversity outcome. Recording provenance metadata on the
process used to analyse and visualise the outputs is challenging, and currently
there are no codified standards as to how this should be done for ABMs. For
FEARLUS-SPOMM, the analysis and visualisation methods used drew heavily
on statistical techniques available as R packages. Although R allows transcripts
of interactive terminal sessions to be saved, the work involved great deal of explo-
ration of alternative analyses and visualisations, not all of which were reported
in the manuscript as finally accepted. Such transcripts are therefore not the best
way to record the means by which a model’s outputs were analysed, and hence
the strategy used was to save each analysis or visualisation in a(n R) script. Since
the output from the (Swarm) model software used a mixture of text formats,
some Perl scripts were also written to process that output into CSV format for
easy import into R. When the MIRACLE project [?] provided a context in which
the replication of that analysis was necessary, an opportunity was created to test
the viability of the strategy of relying on scripts to record provenance.

‘Multifinality’ (the same initial conditions and parameter settings having
qualitatively different results) in ABMs means we need to ensure that reported
results are not just down to a matter of chance. This is one of many reasons (e.g.
in empirical contexts especially, calibration, validation and sensitivity analysis)
why experiments with ABMs involve large numbers of runs. The tedium (and
in larger-scale cases, infeasibility) of conducting each run by hand means most
ABM experiments resort to some kind of automation, including of the kind
provided by workflow tools mentioned above, but also using built-in features
of ABM software (e.g. in the case of NetLogo, BehaviorSpace). This is fine if
all we want to do is repeat the same process, but what if we are interested
in why a particular instance of that process led to an unexpected outcome?
Re-executing the workflow will not necessarily generate exactly the same result
unless we have a record of everything needed to do that (including seeds for
pseudo-random number generators). We refer to this as the ‘automation and
replication’ problem.

The automation of experiments is already solved by scripting. A script —in a
scripting language such as Python, Julia, or Perl, but more typically an operating
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system ‘shell’ language such as Bash — records the sequence of programs that
need to be executed to reproduce the experiment. This at least repeats the
experiment, rather than precisely replicating a specific set of results. We believe
that anybody who does experiments with their agent-based models should at
the very least be scripting most of their experiments. In our experience the
preparation and the execution of the experiment is relatively straightforward
to script. Post-processing to the final data tables, diagrams, etc., that appear
in manuscripts and other documents should be included in these scripts. These
scripts can be conceived as workflow metadata — the means by which a class of
outputs is achieved, rather than a specific instance.*

Provenance metadata is used to record the means by which a specific out-
put is achieved, which is more suitably stored in a database. That database
is updated using a series of scripts written in Python, allowing us to develop
on laptops and run the resultant code in high-performance computing environ-
ments with little or no reconfiguration. Bash scripts automating the experiment
workflow are then modified to call the Python scripts to update the provenance
database. We implemented the database in Sqlite3 for local development and
PostgreSQL in high-performance infrastructure. In this way, we have created a
provenance tool that can record provenance during workflow execution.

Another project adopting a similar approach is the fair data pipeline [?],
in which the provenance is automatically recorded by embedded model code
in R, C++4, Java, Julia and Python. However, one of our requirements was
not to modify the model code if this could be avoided.® In the example above,
the FEARLUS-SPOMM model is written in Objective-C [?]; with additional
supporting Perl and R scripts to prepare the data and conduct the post analysis.
We would also prefer not to modify these scripts. Instead, we wrote wrapper
scripts in Bash [?]. A further observation is that our framework generalises to
more source metadata (papers, data, other experiments), and is written with the
requirements of agent-based modelling in mind first and foremost.

In the rest of this paper, we describe the scripting tool we have developed for
automatically recording metadata, which can be incorporated into the analysis
replication process, and how this was used to regenerate some of the figures in
[?]. In addition we show a simple tool we have already developed to trace data
through the provenance graph, and suggest additional work we would like to
pursue.

2 The SSREPI provenance and workflow tool

One of the artefacts of the MIRACLE project [?] was the Social Simulation
REplication Interface or SSREPI. This is the schema shown in figure 1. This
schema has evolved since it original conception; [?] is the latest version. The
schema is derived from the Dublin Core [?] and PROV-O ontologies [?] among

4 In the case that all of the programs executed are deterministic, the class is a singleton.
5 If the model code did not output the seed it used, then it would need to be modified.
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Fig. 1. The overall SSREPI Schema with the workflow part magnified (will be used
later in the paper
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others, and is designed with agnosticism towards the underlying database tech-
nology, having been implemented in PostgresSQL [?] and Sqlite3 [?].

Besides the distinction between workflow and provenance described above, we
can discriminate fine- versus coarse- grained metadata. Coarse-grained metadata
describes how particular files come (or came) into being, or were (or could be)
used to bring other files into being. Fine-grained metadata describes specific
values recorded in social simulation outputs. To make the distinction concrete,
suppose a simulation produces a CSV file. The data within the CSV file are
covered by fine-grained metadata, whilst the fact that the simulation produces
the CSV file is coarse-grained.

To build SSREPI, each table in schema shown in fig. 1 was coded as an object
type in Python. Each table row was represented as an instance of such an object.
This design approach was adopted to enforce a consistent coding methodology
across all tables. To these were added a few simple coordinating commands that
could be called from Bash:

— create_database.py - creates a database idempotently.

exists.py - checks if a particular row in a table exists.

— get_value.py - gets any specified single value from a table given the primary
key.

— get_values.py - gets one or more rows given the search values.

— next_study.py - gets the next available and unique study number.

— update.py - idempotently updates a particular row in a table.

‘Idempotent’ indicates that multiple operations on the same entity will leave
it unchanged after the initial operation. For example multiplying something by
1 is idempotent. This allows for less rigorous exception criteria, but implies that
initialisation must be performed with care, as older data will not necessarily
be destroyed when overwritten with newer values, but retain any values that
already exist.%

Each of the Bash commands listed in table 1 composes over the above
Python commands to populate the SSREPI database in a consistent and log-
ical manner. Broadly speaking, SSREPI_application, SSREPI_run, SSREPI_
batch, SSREPI_input, SSREPI_output and SSREPI_argument are responsible
for recording coarse grain provenance. SSREPI_value, SSREPI_visualisation_
variable_value, SSREPI_statistical_variable_value, SSREPI_run and SSREPI_
batch record fine-grain provenance. The remaining primitives are largely about
recording other metadata. Further information may be found in the tool’s public
repository.

Using SSREPI for existing workflow scripts is a somewhat laborious task en-
tailing adding calls to the provenance metadata scripts in Table 1. Improvements
to the ‘interface’ is the subject of future work.

5 This is a design decision that may need revisiting.
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Primitive Type |Purpose

SSREPI_require_minimum M Lower bound on software hardware re-
quired

SSREPI_require_exact M Exact bound on software hardware re-
quired

SSREPI_application P & M|specifies some executable

SSREPI_me P & M |Determines executable being run or re-
turns a proper reference to the exe-
cutable being run.

SSREPI_argument P An argument type to an executable

SSREPI_output P An output type from an executable

SSREPI_input P An input type for an executable

SSREPI_person M Provide metadata for a particular actor
within this system

SSREPI_project M Specifies a project which contains all
studies

SSREPI_study M A set of experiments makes up a single
study

SSREPI_set M Sets the default licence and other meta-
data

SSREPI_involvement M Links personnel to a study

SSREPI_paper M A paper associated with this study

SSREPI_make_tag M Used for building a folksonomy

SSREPI_tag M Used to tag any entity with a folkson-
omy tag

SSREPI_contributor M A person with some kind of relation to
an executable or script.

SSREPI_statistical_method M Record a statistical method

SSREPI_visualisation M Record a method to create an image to
depict one or more values.

SSREPI_statistics M Record activities that compute and
populate the values of statistical vari-
ables.

SSREPI_visualisation_method M Methods for generating visualisations.

SSREPI_implements M Links a statistical or visualisation
method to an application

SSREPI_parameter M Record the name of a parameter taken
by a statistical or visualisation method.

SSREPI_statistical_variable M A name for (one of) the result(s) of a
statistical method.

SSREPI_visualisation_variable P & M |Declares a named variable of interest

SSREPI_variable M Names a variable of interest

SSREPI_statistical_variable_value|P & M|Sets an actual value for a named sta-
tistical variable

SSREPI_value P Sets a value.

SSREPI_content M Links a kind of output/input/argument
to a variable

SSREPI_person_makes_assumption M Links a person to an assumption

Table 1. SSREPI’s Bash commands for provenance (Type column entry ‘P’) and other

metadata (Type ‘M’) recording
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3 Demonstration

Here, we demonstrate the use of SSREPI by repeating the experiment in the
paper [?], showing some of the workflow and provenance graphs, and then using
fictitious examples to apply the workflow and provenance metadata to addressing
issues in large-scale experiments. From a workflow perspective, the main result
is that the principal diagrams in that paper were successfully recreated, with the
same, albeit not identical, results. By this we mean that the diagrams produced
for the original paper [?] were "roughly the same”. They were not identical,
but contained similar features close enough to illustrate the features that were
originally reported on in the original research from [?].

After a run had completed successfully the database was run through several
supplementary programs to produce the following visualisations of the prove-
nance metadata recorded:

— Analysis - fine grain provenance pertaining to statistical and visualisation
outputs.

— Finegrain - a provenance diagram down to the level of variables.

— Folksonomy - a diagram showing annotations against the database, pro-
duced and categorised at the discretion of the user doing the annotation

— Project - management metadata. Largest granularity of metadata sup-
ported

— Provenance - provenance diagram at the level of file and parameter

— Services - service provided and requirement description

— Workflow - the actual workflow

The supplementary programs use the Dot language for input to Graphviz[?],
producing the diagrams such as those in figures 2, 3, 4 and 5. The workflow
graph is in fig. 2. The resultant provenance graph is massive, since there were
20,000 runs (so 20,000 sets of outputs to record), so we only show a very small
section of the provenance graph in fig. 3.

So what use is this provenance metadata, if as shown in fig. 3 it is so difficult
to read or visualise? Imagine for the purposes of illustration that we have found
a bug in a script. The entity Applications.application_3831436655 is an ex-
periment setup script SSS-StopC2-Cluster-create.pl. We can use the work-
flow graph to see what else in the workflow might be affected. As might be ex-
pected for an experiment setup script, there are serious cascading consequences,
which we can visualise in Figure 4. The Dot language used by Graphviz consti-
tutes a primitive graph database. Indeed there are programs that can transform
Dot files into TinkerPop GraphSON format [?,?], two reasonably well known and
utilised graphing database formats. To generate Figure 4, we used the workflow
visualisation Dot file rather than the relational database. In addition we used the
workflow sub-graph because this is probably one of the easier graphs to follow
visually.

Similarly, the provenance metadata can be used to check the damage caused
to a large-scale experiment by a single bad dataset. In the real experiment, the
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m

calls_applicat lcation,_3831436655

‘parent._application = application. 3831436655
next= application_648609270

ext-from-pipeline

Pipelines
application_648609270

‘parent_application-from-pipeline created = 2022-12-20
creator = someone
calls_application = application_648609270

parent_application = application_3831436655

parent_application-from-pipeline

Applications
555-5topC2-Cluster-create.sh

ereated = 2022-1220
alls_application-from-pipeling

Fig. 2. The workflow sub-graph - showing the part of the graph of interest magnified
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Fig. 3. A small sub-section of the provenance graph - this is deliberately selected to
indicate the complexity of the graph and how hard it is to read.

input files are generated by running a script, but for the purposes of the example,
suppose the data in Containers.container_42949672955 is wrong. The data
in this file forms a input file to a handful of runs, and we want an idea of how it
has affected our results. We can visualise the propagation of the error in a very
small section of of the provenance graph in fig. 5, but we can use the database
to list the entities affected:

Having done so, we are then in a position to fix the data file, and rerun only
that part of the workflow needed to regenerate the affected containers.

4 Discussion

It might seem that we are confusing random stream control and reproducibility of
individual simulation runs, i.e., given a set of inputs and random stream that the
simulation would always produce the same results, versus the reproducibility of
an overall analysis that comes out of a calibration or other simulation workflow.
However, the latter issues cannot even begin to be addressed until a reproducible
and reliable workflow is implmented for agent based models - that is a directed
acyclic graph from inputs to published outputs/visualisation and/or results. This
may seem like a contradiction to our earlier claim that this is not a workflow tool,
but workflow in agent-based models is complex and the link from data/model
to published material for agent-based models is currently missing. Agent based
modelling does not have any specialist needs in terms of work control other
than magnitude on the number of inputs, number of runs and number of resuts.
However step ups in magnitude are not always trivial as the step up petaflop to
exaflop is demonstrates [?].
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Fig. 4. The workflow sub-graph show the propagation of a broken application (in red)
in the background. The break-out box shows a magnified detail to show the content of
the graph.

Fig. 5. A provenance sub-graph showing (in red) the propagation of bad data through
the system
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Applications.application_3450918915 Applications.application_648609270

Computers.asterix.local Containers.container_1814970370
Containers.container_1982026419 Containers.container_2050039078
Containers.container_2056384913 Containers.container_2060874102
Containers.container_2387213333 Containers.container_2486610989
Containers.container_2582525701 Containers.container_2759060318
Containers.container_2865400753 Containers.container_3025688835
Containers.container_3307537171 Containers.container_3470971297
Containers.container_354343442 Containers.container_4235735972
Containers.container_4294967295 Containers.container_441913555
Containers.container_505627104 Containers.container_800277554
Containers.container_878886043 Containers.container_900718909
Persons.doug Persons.doug_salt
Processes.process_232221298886493... Processes.process_326475499597022...
Specifications.R Specifications.bash
Specifications.cpus Specifications.disk_space
Specifications.memory Specifications.os
Specifications.perl Specifications.python

Studies.1 Users.doug

5 Future work

Provenance should be a directed acyclic graph. As the schema stands, it does
not guarantee that the graph is acyclic. In future work, we can normalise the
schema to remove redundancy and the conflicts arising therefrom; and once this
complete, we can formally prove the schema to be acyclic. Until the schema
is formally analysed, then we can not say with confidence that any recorded
provenance is not inherently contradictory. Since such a schema is likely to be
iteratively revised if the underlying provenance model changes or additional
functionality is required, then it would be advisable to automate such proving
of consistency (assuming correct normalisation).

We should probably be using a graphing language such as Gremlin [?]. The
advantages of using graphing databases over relational databases is that such
languages are inherently designed to store, traverse and query the graphs that
are the main product of this framework. This makes querying in such languages
trivial and fast. In a relational databases the SQL statement to do this are
cumbersome, awkward and probably (human) error-prone given their size and
complexity to construct. Moreover on huge datasets they are reportedly slow.
Relational databases do have the advantage of being an extremely mature tech-
nology and the availability of utilities that implies. A further advantage of using
relational databases is that Structured Query Language is standard for all such
databases, and therefore queries written for any relational database should be the
same. A tool we already use, Graphviz, already does act like a graphing database
language to a certain extent. Indeed we used the Graphviz Dot files produced by
the visualisation supplementary programs, rather than the relational schema, in
our simple examples to trace bad data through our provenance graphs. However
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the Dot language of Graphviz is primarily purposed as a diagramming language
and lacks the sophistication, such as a built-in query language of say, Gremlin.

We would eventually like to take many provenance databases run some ma-
chine learning across them to see if there are any commonalities. We hope to
uncover similarities in setup, execution and post-processing that could form core,
reusable and proven components for primarily agent-based modelling but also
for other modelling frameworks. These can then be used to suggest workflow —
e.g. given files of these kinds, what have others done to visualise them?

The plan is to adapt this provenance framework to other model running lan-
guage frameworks, in particular R, Python, Julia, Java and thence NetLogo. This
would take the approach of the fair data pipeline [?], but unlike the example we
have presented here such provenance would be embedded in the experiments as a
matter of course. In the meantime, our demonstration with FEARLUS-SPOMM
shows that the SSREPI provenance framework may be ‘retrofitted’ to existing
experiments (although possibly at the cost of the programmer’s sanity with the
present interface), and we can successfully repeat the published experiment. In
the short-term, we have tentative potential adopters using R and Python as their
primary modelling language.
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