
1 Introduction

In contrast to the seasonal Influenza virus, where evolution has been rather grad-
ual and linear [4], SARS-CoV2 has seen unexpected patterns of viral evolution
that puzzled scientists [10].

This is particularly true for the viral strains – known as variants – associated
with the ”Omicron” lineage, which has proven to be only a distant relative to
the previously dominating ”Delta” variant [2]. Accordingly, variants from the
Omicron lineage tend to evade immunity acquired from other variants as well
as (non-adapted) vaccinations [8].

Various plausible explanations have been put forward to explain this unex-
pected phenomenon of non-linear evolution including a prolonged evolution in
reservoirs that are not under surveillance, such as immunocompromised hosts,
or animal reservoirs [10]. Some studies suggest that a predecessor of Omicron
has developed in mice [11, 9], while other studies show that the virus is able to
survive and evolve in some HIV patients, leading to idiosyncratic patterns of
viral evolution [3]. Phylogenetic analysis suggests that Omicron shares common
ancestry with the ”Lambda” variant [2].

We aim to shed light on the co-dynamics of the spread and evolution of
viruses using a theoretical framework. To this end, we couple a version of the
standard epidemiological SIR model [6] with evolutionary dynamics as suggested
by [12]. We transform an evolutionary-epidemiological agent-based model [7]
back into a SIR-based approach, taking into account important findings of [4].

Our results do not preclude explanations to the origins of Omicron based
on animal reservoirs or immunocompromised human carriers, but illustrate that
there may be no need for them to explain a highly non-linear viral evolution
as observed of the SARS-CoV2 Omicron variant. Instead, we show that such
a non-linearity can emerge endogenously through interventions common during
the Covid-19 pandemic.

2 Methodology

Despite introducing the assumption of perfect mixing the results of [4] regarding
linear evolutionary patterns can still be reproduced. In turn, we gain the ability
for a more detailed sensitivity analysis. In addition, we simplify the model for
intervention policies during a pandemic of [7]. To ease the evaluation of our
model results we introduce a metric for tree linearity outlined below.

2.1 Mutations

The simulated RNA strand in each strain is divided into 12 codons. Each
consists of 3 nucleotide bases. If one base mutates a new strain is added to the
phylogeny.

The mutability is one of the core parameters in [4]’s analysis. They find the
most linear mutation pattern in a low mutability of 1e − 6 mutations per day
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and infected individual [4]. Hence, the lowest mutability is of high interest to
test our hypothesis.

Like in [7] the strain specific parameters of the epidemiological model are
also subject to mutation.

2.2 Epidemiological model

The ODE system derived from [7]’s agent-based model is a classic SEPIARD
model with cross immunity and an additional compartment for the short lived
immunity of [4]. Two compartments are global: That of the susceptible S and
that of the short lived immune F . The other compartments are local to each
variant i in the phylogenetic tree.

Cross immunity between strains is also based on [4]’s model. The codons
of the simulated RNA mentioned above can be translated into a sequence of
proteins. An antigenic distance di,j between two strains i and j can be derived
by comparing their protein sequences. It serves as a proxy for the probability to
evade a previously infected host immune system. For further details on the cross
immunity model refer to [4] where we also find the basis for our parameters.

2.3 Interventions

Our intervention model is rooted in the assumption that the threshold of symp-
tomatic infections for interventions is inversely correlated to the observed fatal-
ity of the virus. We employ a base threshold τb giving the threshold at a base
death rate λb. This actual threshold τi is then found as the product of τb and
an acute death rate dependent factor:

τi = τb ∗ λb ∗N/
∑
i

(̇D)i (1)

In case an intervention is in place, the infectiousness βs of all strains s is
multiplied by a reduction factor βi ∈ [0, 1]

2.4 Metrics

To quantify the effects of the intervention we introduce a metric targeted at the
key feature of phylogenetic linearity. This way we can also extend the qualitative
analysis previously done by [4]. We base this metric on the impact a strain at
s in tree t has within the phylogeny. Our quantification can be weighted with
a weight function fw ≥ 0, where fw(s) > 0 for some s in t. This impact I is
defined as the weight of a strain and the sum of the weights of all its descendants:

I(t, s) = fw(ts) +
∑
c

fw(tc) (2)
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Where c covers all children of s. The mean linearity Λ of a tree can then be
based on the ratio of maximum child impact and total strain impact.

Λ(t) =

∑
i fw(ti) +

∑
i maxc(i) I(t, c)∑

i I(t, i)
(3)

In effect, Λ is defined in the interval ]0, 1]. A linearity of 1 represents a tree
where each node barring a single final leaf bears exactly 1 child. In this case
Λ is independent of the weight function fw. In contrast, a low linearity can be
achieved by distributing the weight uniformly among a large number of children.

In addition, we provide a metric h based on entropy. This metric is less
sensitive to the specificity of linearity. However, it can be rooted in literature
and yields a better representation of order within the tree [5, 1]. The path
entropy is defined on the probability p that a path in a tree takes a node n [5].
Again, we allow for a weighting of the metric with a weight function fw inspired
by [1]. Using a weighted entropy we find a weighted mean of the marginal
information components in the tree:

h(t) = −
∑

i

∑
c fw(tc) ∗ 1/ni ∗ log 1/ni∑

i fw(ti)
(4)

3 Results

To test our hypothesis, we perform a sensitivity analysis of multiple parameters
of the intervention model. We consider base thresholds τb of 5, 000, 10, 000 and
15, 000 , with base death rates λb of 5e − 6, 1e − 5 and 5e − 5 and reduction
factors βi of 0.1, 0.3 and 0.5. The mutability is kept low with 1e− 6 mutations
per day and infected agent, to provide for the most linear baseline.

These scenarios are compared against a baseline scenario with no interven-
tions. In contrast to [4]’s simulations, our scenarios deal with a novel pathogen.
Thus, our simulations do not start at equilibrium. Reproductions of [4]’s results
were successfully performed with prior equilibration though.

Figure 1 pane a shows the linearity metric weighted by total infections of a
strain for different levels of intervention. It depicts the mean and standard de-
viation of a total of 35 simulations for each parameter combination. As visible,
the phylogenetic linearity is reduced in all intervention scenarios. This effect
is strongest in the beginning of the simulated epidemic. The interventions suc-
cessfully reduce the infections. However, this also reduces the amount of agents
with short lived immunity. Although there are fewer mutations, new strains face
a more vulnerable public in a high number of susceptible agents. As a result,
the phylogenetic linearity is decreased.

The similarly weighted tree path entropy is depicted in Figure 1 pane b. The
entropy data stems from a total of 30 simulations per parameter combination. It
shows a similar short term effect of the interventions. In contrast to the linearity,
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a) b)

c) d)

Figure 1: Simulation results as a mean of 35 simulations per parameter combi-
nation. Pane a) shows the linearity in scenarios with and without interventions.
The entropy metric is plotted in b) and pane c) shows the evolution of the phy-
logenetic tree size. In d) we depict the prevalence of interventions among the
simulation runs for different intervention scenarios.

the entropy remains higher throughout the rest of the simulation. This could
be due to the larger size of the trees in intervention scenarios shown in pane c.

Figure 1 pane d shows the prevalence of interventions for different scenarios.
Despite differences in the abundance of interventions the effects on tree linearity
do not differ by much. It appears that initial interventions are key in the tree
shape heterogeneity. This may have important implications for future pandemic
management.
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