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Abstract. In this paper, we discuss the advantages and challenges of
a ‘generative’ approach, as opposed to the widely used ‘descriptive’ ap-
proaches, to the production of synthetic populations. We present an im-
plementation of this approach, in the form of an agent-based model which
grows a synthetic population, starting from the UK fertility and mortal-
ity rates. We show how this model is able to reproduce some demographic
data of the UK population.
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1 Introduction

In the last few years, ABM and microsimulation research have seen a significant
growth of studies on the generation of synthetic populations matching the em-
pirical demographic and socioeconomic data of a target population (for a review
see [5]).

Chapuis et al. [5] distinguish the synthetic population techniques between
those based on the properties of the entities (known as synthetic reconstruction)
or reproduce known real entities (known as combinatorial optimization). Syn-
thetic reconstruction generates populations by creating agents with attributes
randomly sampled from existing distributions or from an estimated joint distri-
bution, typically using methods like the IPF or the MCMC algorithms. On the
other hand, combinatorial optimization generates agents which are ‘copies’ of
real individuals, trying to fit the various population-level characteristics’ distri-
butions. Notwithstanding the different statistical algorithms used by these two
paradigms, both of them focus on generating a faithful micro-level picture of the
real target population, so they can both be considered as part of a high-level
‘descriptive’ paradigm.

Here we propose an alternative approach based on the ‘generative’ paradigm,
able in principle not just to describe but to explain the emergence of the de-
mographic and socioeconomic structure of real populations. This approach is
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derived from the semi-artificial populations approach proposed by Bijak et al.
[4,11]. According to this generative approach, a synthetic population is gener-
ated from the ‘bottom-up’, starting from a random population of agents placed
on a more or less defined geographical space. Then, we simulate the agents’ in-
teractions and life course events: partnership formation/dissolution; births; and
deaths. The occurrence of these events can be data-driven, i.e., based on em-
pirical data such as the fertility and mortality rates, theory-driven, i.e., based
on behavioural models according to which agents take some life course decisions
(e.g., the choice of their partner or the decision to relocate), or a mixture of the
two, with the agents’ behaviour including constraints which ensure the empiri-
cal data is reproduced at the aggregate level. Generation after generation, the
process produces a synthetic population whose structure we can compare to the
structure of the target real-world population.

We argue that this approach has three main advantages compared to the
‘descriptive’ approach, stemming from the theory-driven dynamics of the model.
First, we can assign to the agents characteristics and attributes for which there
is a lack of empirical data (but which we may want to consider in our ABM).
In other words, by focusing on the process through which an agent happens to
have a certain characteristic, we can mitigate the problem represented by the
lack of data about how this characteristic is distributed in the population.

Second, the generative approach allows us to reproduce aspects of the pop-
ulation’s structure which may be important to include but which can hardly be
reproduced through statistical techniques because of their ‘complex’ nature. An
example is the generation of kinship networks connecting agents, and household
networks which had a fundamental role in an application of this model meant
to simulate the provision of informal social care. See [7] and [8]).

Third and, perhaps most importantly, this approach allows us to take into
account the effect of agents’ behaviour and their interactions on the demographic
and socioeconomic structure of the population. Adopting a faithful picture of a
society at a certain period in time as the starting point of an ABM simulation
implies the assumption that the dynamics of the model’s variables do not affect in
any way the life course events affecting the joint distribution of the population’s
characteristics. To the extent that this assumption does not hold, simulations
based on populations generated through the ‘descriptive’ approach will produce
biased results.

On the other hand, this approach will give us a realistic model of the pop-
ulation only to the extent that the behavioural theory driving its dynamics is
sound. So, the inclusion of unsupported behavioural assumptions, may increase
the uncertainty of the model’s outcomes.

2 The model

The current model was programmed from scratch in Julia, based on an earlier
version written in Python [8]. The current version as well as the release used to
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generate the results presented in this paper can be found at https://doi.org/
10.5281/zenodo.8154478.

2.1 General concepts

Agents in the model have a socioeconomic status (SES), encoded as a number
between 0 and 4. They can require care (due to physical or mental illness) which
is represented as care need, a number between 0 (no care needed) and 4 (unable
to live alone).

Besides biological family relations, the model explicitly includes the concept
of guardian, i.e., a person legally responsible for a child (usually the parents),
and provider, i.e., a person economically providing for another person.

2.2 Setup

The population is created using the age and gender distribution as measured
in the 1921 UK census [2]. A proportion of startProbMarried of the adult
population is assigned as couples (with age difference maintained between 5 and
-2). Then with the probability 1− startProbOrphan · age for each individual
in the population a random female agent that is between 18 and 40 years older
is assigned as the mother and, if present, its partner as the father.

To build the map, houses form towns containing a number of houses in rough
proportion to real-world population density. Each adult female is assigned to a
randomly selected house together with her partner and minor children, if present.
All remaining agents form single-person households.

The simulation starts in the year 1920 and updates in one-month time steps,
until the year 2040.

The demographic and socioeconomic time course events we included in the
framework are shown in Figure 1. The events are placed along the timeline to
reflect their approximate, typical, timing. Some life course events (such as birth,
adoption or death) are events which do not depend on the agents’ decision pro-
cess, whereas others (indicated with the letter D in Figure 1) involve the agents’
decision process. Moreover, some events logically follow others (e.g., divorce is a
probabilistic event following the formation of partnership).

2.3 Births

Married females between minPregnancyAge and maxPregnancyAge and
whose youngest child is older than 1 can give birth. The probability to give
birth is calculated from a base birth with a bias which depends on the woman’s
socio-economic status and on the number of previous children (capped at 4).

Fertility rates are computed similarly to mortality rates: data from the Eu-
rostat Statistics Database [6] and the Office for National Statistics [10] are used
from 1950–2009, with Lee-Carter projections taking over thereafter.

For years before 1951 the base birth rate is obtained by scaling the empirical
overall population fertility (i.e. children per person and year) by the proportion

https://doi.org/10.5281/zenodo.8154478
https://doi.org/10.5281/zenodo.8154478
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Fig. 1. Life course events.
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of potential mothers in the population and an empirical age-specific fertility
factor. For years after 1950 empirical age specific fertility data is scaled by the
proportion of potential mothers of that age.

If a woman gives birth a new agent is created with the woman and her partner
as parents and guardians, the woman as a provider and the woman’s house as
home.

2.4 Adoptions

All individuals that can not live alone and do not have a guardian get assigned
a new guardian if possible.

The list of potential guardians in this class is, in order, the individual’s par-
ents, partners of their previous guardian(s), parents and siblings of the indi-
vidual’s parents and parents and siblings of the previous guardian(s). The first
person out of this list that is alive and an adult is selected, if available.

If no family guardian is found a random couple where both partners are
adults and have worker status is selected. If a guardian is found the individual
is moved to the guardian’s house and the guardian and their partner (if there is
one) are assigned as guardians to the individual.

2.5 Marriages

All single adult males with a care need level below 4 attempt to find a partner.
Single females that are older than minPregnancyAge are eligible as partners.

Marriage probability Given a man’s age class c = age/10, the basic yearly
probability of that man to find a partner is calculated as

pm,base,c = basicMaleMarriageProb·maleMarriageModifierByDecadec·fwork.

Where fwork is defined as notWorkingMarriageBias if the man has a care
level above one or is not working, and 1 otherwise.

If rn,c is the proportion of men without any children living with them in age
class c then the realised probability to marry pm,c in that age class is defined as

pm,c =


pm,base,c · 1

rn,c+(1−rn,c)·manWithChildrenBias men without children

pm,base,c · manWithChildrenBias
rn,c+(1−rn,c)·manWithChildrenBias men with children.

Every eligible man marries with probability pm,c.

Partner selection If a man marries, a woman is selected out of those eligible
that also

– do not live in the same house as,
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– and are not a relative to the first degree of

the focal man.
The selection is done by weighted random choice where a woman i’s weight

is calculated as a product of a number of different factors:

wi = geoFactor · socFactor · ageFactor · childrenFactor · studentFactor.

Given the Manhattan distance (= sum of distances in x and y direction)
between the man’s and the woman’s town d,

geoFactor = 1/ed·betaGeoExp.

The status distance s is the absolute difference between the man’s and
woman’s social classes rm and rw (the maximum of the woman’s parents classes
if she is a student), normalised by the number of classes. The social factor is
then calculated as

socFactor =

{
1/es·betaSocExp rm < rw
1/es·betaSocExp·rankGenderBias otherwise.

The age factor is calculated from the adjusted age difference

dage = ageman − agewoman −modeAgeDiff

as:

ageFactor =

{
1/ed

2
agemaleOlderFactor dage > 0

1/ed
2
agemaleYoungerFactor dage ≤ 0

The children factor is calulated from the number of children living in the
same house as the woman, n as

childrenFactor = 1/en·bridesChildrenExp.

Finally, if the woman is a student, her probability of being selected is reduced
by a factor which is a parameter of the model.

The couple are set as each others’ partners and all dependents of either
individual become dependents of both.

With probability probApartWillMoveTogether both individuals in the
couple as well as their dependent children or other dependent members of the
households move in together. With probability coupleMovesToExistingHouse-
hold the house they move to is the house with the least occupants out of the
two houses of the new couple. Otherwise they move into a randomly selected
empty house in the same or an adjacent town to one of the two households.
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2.6 Divorces

Each couple has the potential to divorce. The probability to divorce is calculated
from a base divorce rate pdiv biased by SES, using parameter divorceBias with

pdiv =

{
basicDivorceRate · divorceRateModifier(age(m)

10 ) year < 2012

divorceVariable · divorceRateModifier(age(m)
10 ) otherwise

If the woman’s status is ‘student’, she then starts working. The man moves
out together with each of the man’s children who are not the woman’s chil-
dren, as well as with a probability of probChildrenWithFather each of the
man’s dependents who have the same relationship status with both the man and
woman. The new home is a randomly selected house from either the same or an
adjacent town or the entire country.

2.7 Age transition

In each iteration/month, the age of all the agents born in that month is increased.
Agents that are 18 years old become independent. That means all guardian-
dependent relationships are dissolved.

2.8 Work

For every eligible agent changes in life stage are checked:
ageTeenagers → teenager
ageOfAdulthood → student
ageOfRetirement → retired

Students New students get a class rank of 0 and become out of town students
with probability probOutOfTownStudent.

Retirement Newly retired agents’ wage and working hours are set to 0. Their
pension is calculated as

pension = lastIncome · shareWorkingTime · edk

with

shareWorkingTime = workingPeriods/minContributionPeriods

and
dk ∈ N [0,wageVar].
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Workers For all workers that are not in maternity leave, working period and
work experience are increased by 1 and wage and income calculated.

With a worker’s initial and final incomes Ii and If (see social transition) the
base wage wb is calculated based on the agent’s SES and work experience as

wb = If
Ii
If

e−incomeGrowthRate(class)·workExperience

Using the wage stochasticity

dk ∈ N [0,wageVar],

the wage is then simply w = wb · dk
This wage is used to determine the agent’s income, which is the product of

the wage and the care need-dependent number of working hours.

2.9 Work status

Check transitions for all agents born in the current month whose age is equal to
the workingAge of their class rank and whose current status is student.

Study Agents with a SES class rank lower than 4 begin to study or keep study-
ing with a probability ps. This increases their SES class by 1.

Probability to study ps is 0 if both parents of the agent are dead, if the agent
has no provider or if the household disposable income is 0.

Otherwise ps is the product of income and education effects:

ps = incomeEffect · educationEffect

The income effect is calculated as:

incomeEffect =
constantIncomeParam+ 1

eeduWageSensitivity·relCost
+ constantIncomeParam

Where relCost is the ratio of forgone salary to perCapitaDisposableIncome:

forgoneSalary = incomeInitialLevels(classRank) ·weeklyHours(careNeedLevel)

relCost = forgoneSalary/perCapitaDisposableIncome

With dE as the difference between an agent’s parents’ maximum class rank
and that of the the agent itself we obtain the education effect as:

E = eeduRankSensitivity·dE

educationEffect =
E

E + constantEduParam
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Work Agents that do not study or stop studying, start working instead. Their
status is set to worker and their initial income is set to

Ii = incomeInitialLevels(classRank) · edk.

Where dk is again the wage stochasticity factor:

dk ∈ N [0,wageVar]

The agent’s final wage If is drawn from the class-specific income distribution.

2.10 Relocation

Single agents that can live alone, are workers and share their house with at
least one other person who is neither their dependent or guardian, move into
their own house with probability moveOutProb. They move into a randomly
selected empty house (either in the same or an adjacent town or anywhere)
together with their dependents.

2.11 Death

Mortality rates in the model follow Noble et al. [9] and use a Gompertz-Makeham
mortality model until 1951. From that point we use mortality rates drawn from
the Human Mortality Database [1]. Lee-Carter projections generate agent mor-
tality rates from 2009.

3 Calibration

We used population Monte Carlo ABC [3] to calibrate the model against a
number of empirical distributions, which, briefly, works as follows: A population
of random points in prior parameter space is generated. Then, on each iteration
the “quality" of a point is calculated and a proportion of the worst points is
replaced with new points generated by perturbing a proportion of the best points.
To obtain the quality of a point the simulation is run with that parameter
combination and the sum of the relative mean square differences between the
empirical data sets and the respective model outputs (from the corresponding
time step) is calculated.

We used the following data sets for calibration: the UK population age pyra-
mid in 2020; the distribution of UK households by size in 2021; the distribution
of ages of women giving birth in 2020; the distribution of the differences between
the age of the men and the women forming partnerships (in 2017, using the data
for France); the distribution of new mothers by number of previous children in
2020; the distribution of births by mothers’ age and SES in 2020; the share of
lone parents’ households in 2021; the distribution of people by SES and age in
2011; the income decile distribution in 2020.
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4 Results

We performed a calibration of the parameters of the model to assess its capacity
of replication some features of the real UK population. Then, we performed 128
simulations sampling the parameters’ combinations according to the posterior
distribution resulting from the calibration. The figures below show the mean
over 128 simulations and the 95% CI.

As we can see from Figure 2 the model replicated quite well the population’s
age distribution (i.e., the population pyramid) of the UK for the year 2020.

Figure 3 shows the share of households by size in the year 2021. We can see
that, in general, the simulated distribution replicates the empirical distribution
quite well, apart from a few classes (such as size 4, which is too low, and size 6,
which is too high).
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Fig. 2. Population age distribution.

1 2 3 4 5 6+
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S
h
a
re
s

×10 1

Fig. 3. Share of households by size.

From Figure 4 we can see that the model can reproduce very well the distri-
bution of the ages of women giving birth in the year 2020.

Figure 5 shows the distribution of the differences between the ages of part-
ners. We can see that although the model can replicate the mode of the real
distribution quite well, it produces too many couples with men much older than
women, so this is a section of the model which requires further attention in the
future.

Figure 6 shows the dynamics of the minimum and maximum distance from
the ’target’ function, for the first 50 iterations.

5 Conclusions

In this paper we have demonstrated a ‘generative’ approach to the production
of synthetic populations, which provides an alternative to current approaches.
Synthetic populations are highly valuable for social simulation work, as they can
produce realistic populations without the time and expense of collecting and



Growing populations from the ‘bottom-up’ 11

16 20 24 28 32 36 40 44 48

0.0

0.2

0.4

0.6

0.8

1.0

S
h
a
re
s

×10 1
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giving birth.
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analysing both individual- and population-level data. We propose that the gen-
erative approach can achieve this goal while also taking into account individual-
level behaviour on population dynamics. The generative approach is also less
data-hungry than most current approaches to synthetic populations.

This approach also allows us to generate connections, such as kinship net-
works, between agents as they form partnerships, reproduce and move between
households. These data can allow for the development of models examining the
impact of familial connection on phenomena such as informal social care [7].
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In future work, we plan to build on this generative approach to population
synthesis by expanding the scope of agent behaviours, allowing the formation
of realistic social networks as well. Such extensions will allow us to examine the
potential effects of social network interventions on realistic synthetic populations.
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