
Noname manuscript No.
(will be inserted by the editor)

Bounded confidence models generate more secondary
clusters when the number of agents is growing
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Abstract We study the bounded confidence model on a growing population.
We compare simulations of the agent model, its version in continuous densities
and with the standard influence function or a smoother influence function.
We find that the model on a growing population generates bigger secondary
clusters and more systematically than when the population is fixed. Moreover,
our tests with the smooth influence function suggest that these secondary
clusters can be generated by a different mechanism when the population is
growing than when it is fixed.

Keywords Opinion dynamics · Bounded confidence · Minor clusters ·
Growing population · Density model

1 Introduction

Opinion dynamics models express mathematically some hypotheses about so-
cial interactions and provide means to investigate their effect on large popula-
tions of virtual agents. For instance, bounded confidence models [1,2] assume
that when an agent’s opinion is too far from the one of its interlocutor, it has
no influence. This hypothesis can explain the emergence of macro-behaviours
such as consensus, polarization or plurality of opinion clusters. Many papers
are devoted to studying these models and their variants. For instance, several
studies focus on including so-called extremists agents, whose opinion is at the
border of the opinion interval [3–5], others consider agents with confidences
drawn in a given interval[6], with different types of networks of interactions.
Introducing noise in these models also significantly modifies their qualitative
behaviour [7–9]. For a recent review on these models and related ones, see [10].

While in most of the models, the population of interacting agents is fixed, in
this contribution, like in the model studied in [11], new agents are progressively
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added to the population. This model can be related to online communities
of agents that are created, and then may grow more or less rapidly. Recent
models inspired by the physics of gels address, more specifically, the dynamics
of aggregation and desegregation of online groups [12]. In our model, new
agents are added to the population over time while the agents are interacting,
which is not the case in [11]. Our initial intention was to study this model in
different network types, and particularly on scale-free networks. However, it
seems indeed a necessary first step to study the model in full mixed networks in
order to understand its behaviour in this simpler case and compare its results
to the fixed population versions. This paper is devoted to this first step.

The simulations of the bounded confidence model on a growing population
show the emergence of larger secondary clusters that are more systematically
present than in the simulations on a fixed population. Indeed, the studies of the
bounded confidence model with a fixed population have already identified the
secondary (or minor) clusters. These clusters appear particularly clearly in the
continuous version of the model [13], however they remain relatively marginal
and are often ignored in the studies of the agent version of the model.

The increased importance of the secondary clusters in the model on a
growing population led us to question their origin. With this aim, we also run
simulations of the model with a smooth influence function. Indeed, as noticed
by several scholars [3,14], the bounded confidence influence function shows a
strong discontinuity when the distance of the opinions around the confidence
bound, which seems difficult to justify psychologically. We propose a simple
smooth influence function that erases this discontinuity. Our results suggest
that, in the model on a fixed population, the secondary clusters are related to
the discontinuity of the influence function and the growing population model
can also generate secondary clusters through a different process.

The next section presents the model and all its versions: agent based, con-
tinuous, growing or fixed population, standard or smooth influence function.
The following section is devoted to the simulation results with the standard
influence function. Then we present the results with the smooth influence
function. The final section proposes a discussion of these results.

2 The agent model and its continuous version

2.1 Agent model with standard influence

We consider a population of a growing numberN(t) of agents, withN(0) = N0.
An agent i ∈ {1, .., N(t)} characterised by an opinion ai(t) ∈ [0, 1]. All the
agents share the same confidence bound ϵ. At each time step, we perform
the classical bounded confidence interaction as in [1]. Moreover, after each
interaction, with a probability N0ω

N , N being the current population size and
ω ∈ [0, 1] being a parameter, a new agent is added to the population with an
opinion chosen at random uniformly in the opinion interval. More precisely,
the algorithm is as follows.
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1. Let T be the maximum number of iterations;
2. Initialise N0 agents, with opinions uniformly drawn in [0, 1]. Set N = N0;
3. For t ∈ (1, ..., T ) do:

– Set Nt := N
– Repeat Nt times:

(a) Choose two distinct agents i and j and:

If |ai(t)− aj(t)| < ϵ then

{
ai(t+ 1) = ai(t) + µ(aj(t)− ai(t)),

aj(t+ 1) = aj(t) + µ(ai(t)− aj(t)),

(1)

where µ is a parameter of the model, fixed to 0.5 in our simulations;
(b) With probability ωN0

N , add a new agent to the population with an
opinion uniformly drawn in [0, 1] and set N := N + 1.

As a result, in an iteration of Nt interactions, where each agent of the
population interact once on average, the population grows of ωN0 agents on
average. The rationale is that we assume that the flow of incoming agents is
constant over time and for each agent, the frequency of interactions for a single
agent is constant whatever the population size. Therefore, the time for all the
agents to make one interaction is constant whatever the size of the population
and we use this time as a reference.

2.2 Continuous model

Developing a density model approximating the agent version is a classical prac-
tice (see for instance [13,14]). The principle is to consider the evolution of a
distribution of probability of presence of the agents instead of the agents them-
selves. The results of the continuous model are the one that would be obtained
an infinite number of agents defining initially a perfectly uniform distribution
and average interactions all taking place simultaneously. Therefore, comparing
agent and continuous models highlights the effect of the different sources of
noise in the agent model (irregularities in the initial distribution and when
drawing new agents or interacting couples).

In practice, in order to run numerically the evolution of the distribution, it
is necessary to cut the opinion axis into a large number M of intervals, and to
consider the density of agents in each of these intervals. Therefore, the state of
the system is a vector d(t) = (d1, ..., dM ) of M continuous values, approximat-
ing the continuous density. The algorithm is based on the agent model rules
and computes the probabilities that the density increases or decreases in each
interval. This is generally done through a master equation that expresses the
sum of the inflow and outflow at each interval. The repeated action of these
changes at each interval produces the evolution of the density.

Here we use an algorithm that derives the effect of the master equation by
applying the average dynamics of the model and storing all the changes for a
time step into a vector denoted by δ. Then all the changes of the density for
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an iteration are performed at once by adding δ to the current density d(t).
Then, we perform the addition of ωN0 agents to a population. As the sum of
di(t)+δi, for all the intervals i ∈ (1, ...,M), is 1, we add the vector ( ω

Mt , ...,
ω
Mt ).

Then we normalise d(t+1). Finally, after the T iterations, we multiply d(t) by
1+ωt
1+ωT for t ∈ (0, ..., T ), to get growing values of d(t) like in the agent model.

The algorithm is the following:

1. Initialise d(0) = ( 1
M , ..., 1

M ), t = 0;
2. For t ∈ (0, ..., T − 1):
(a) Initialise δ = (0, ..., 0) vector of size M ;
(b) For i ∈ (1, ...,M)

– For j ∈ (1, ...,M)
– if |i− j| < ϵM ,
• k = round(i+ µ(j − i));
• δi := δi − di(t)dj(t);
• δk := δk + di(t)dj(t);

(c) For i ∈ (1, ...,M), di(t+ 1) = di(t) + δi +
ω

M(1+ω(t−1)) ;

(d) d(t+ 1) := d(t+1)∑M
i=1 di(t+1)

3. For t ∈ (0, ..., T ), d(t) = 1+ωt
1+ωT d(t)

2.3 Agent model with smooth influence

With the standard influence rule, the influence of agent i on agent j is strongly
discontinuous when the distance of the opinions |dij(t)| = |ai(t) − aj(t)| is
around ϵ. Indeed, if |dij(t)| is slightly below ϵ, the change of opinion |aj(t +
1) − aj(t)| is close to µϵ, which is the maximum possible change. However, if
|dij(t)| reaches ϵ, the change suddenly drops to 0.

This discontinuity seems difficult to justify psychologically to the eyes of
some authors who proposed some changes in the influence function that elimi-
nate this discontinuity (see e.g. [3,14]). In this paper, we propose the following
variant.

If |dij(t)| < ϵ then

{
ai(t+ 1) = ai(t) + µdji(t)(ϵ− |dij(t)|),
aj(t+ 1) = aj(t) + µdij(t)(ϵ− |dij(t)|),

(2)

We refer to this version as the smooth influence and to the previous version
as the standard influence. The smooth influence can of course be introduced
in both the agent model and in its continuous version.

3 Simulations with the standard influence function

3.1 Examples for N0 = 1000 and N0 = 5

Figures 1 and 2 compare model simulations, for both the agent and its contin-
uous approximation. The density for the agent model is obtained by counting
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Confidence bound ϵ = 0.3, initial agent number N0 = 1000

Growing (ω = 0.01) Not growing (ω = 0)
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Fig. 1 Comparing growing and non-growing cases for the confidence bound ϵ = 0.3. First
line of panels represents directly the opinions, the second and the third represent the density
of opinions. The second line is the density corresponding to the agent model and the third
line the density given by the continuous approximation (see text for details).

the number of agents in 200 regular intervals of the opinion axis. This number
is divided by the total number of agents at t = 200. Remember that the time
t is incremented every N pair interactions, N being the size of the population
at the beginning of time step t.

The main observations from these first examples are the following:

– In the growing population model, the secondary clusters are significantly
larger than in the non-growing case.
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Confidence bound ϵ = 0.2, initial agent number N0 = 1000

Growing (ω = 0.01) Not growing (ω = 0)
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Fig. 2 Comparing growing and non-growing cases for the confidence bound ϵ = 0.2. First
line of panels represents directly the opinions, the second and the third represent the density
of opinions. The second line is the density corresponding to the agent model and the third
line the density given by the continuous approximation (see text for details).

– In the growing model, there is a density of agents remaining around the
major clusters, while this density is null around the major clusters in the
non-growing model.

– The results of the agent model are rather close to the results of its contin-
uous model.

Figure 3 shows examples of runs of the model for an initial number of
agents N0 = 5 and adding ωN0 = 5 agents at each round (first line). On the
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Initial agent number N0 = 5, growing ω = 1

ϵ = 0.3 ϵ = 0.2
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Fig. 3 Agent model and continuous approximation for initial number of agents N0 = 5
and adding ωN0 = 5 agents at each round (see text for details).

second line, we show the continuous approximation for ω = 1. Indeed, in this
approximation, the initial number N0 cannot be taken into account, as the
initial state is a perfect uniform distribution in any case.

3.2 Configurations of clusters when the confidence bound ϵ varies

Figure 4 shows the positions of the clusters for the continuous approximation
model when growing (ω = 1) and not growing (ω = 0), as a function of 1

2ϵ .
The figure distinguishes between primary, secondary and intermediate clusters.
The distinction is based on the effective weight of the cluster (see the caption
of figure 4). The effective weight of a cluster is defined in the appendix of this
paper.

Overall the growing and non growing cases yield similar patterns of cluster
positions. A few differences are however noticeable: for 1

2ϵ = 2.25, a central
secondary cluster is detected in the growing case while it is not in the non-
growing case. Similarly, for 1

2ϵ = 3.25, the growing case shows two secondary
clusters more than the non-growing case. For 1

2ϵ = 2.75, the central cluster is
secondary for the growing case, while it is intermediate for the non-growing
case. Finally, the positions of the clusters are a bit different. These positions
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Cluster positions for the continuous model with standard interactions

Growing (ω = 1) Not growing (ω = 0)
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Fig. 4 Positions of clusters from the continuous approximation for both growing and non
growing cases for different values 1

2ϵ
. The primary (prim. in the legend) clusters a such that

their power is higher than 0.6, the secondary clusters (sec. in the legend) are such that their
effective weight is lower then 0.2. The intermediate clusters (inter. in the legend) are such
that their effective weight is between 0.2 and 0.6. See appendix for the definition of the
effective weight of a cluster.

change more sharply at the transitions in the growing than in the non-growing
case.

The configurations of clusters obtained with the continuous model are ref-
erences for the agent model. For a given value of the confidence bound ϵ,
depending on the other parameters (N0 and ω), the agent model can yield
more or less often the same configuration as the continuous model.

The top panels of figure 5 show the average positions of the clusters for
the agent based model in two cases. In one case (right panel), the initial
number N0 = 1000 and the average number of agents added at each iteration
is ωN0 = 10 and the cluster positions are measured after T = 200 iterations
(on average 3000 agents). In the other case (left panel), the initial number
N0 = 5 and the average number of agents added at each iteration is ωN0 = 5
and the cluster positions are measured after T = 500 iterations (on average
2500 agents). In each case, the figure shows the average of the most frequent
configuration (defined by the number of primary clusters) over 100 replicas for
each value of ϵ. Comparing these results with the results from the continuous
model yields the following main observations:

– The average positions of clusters for N0 = 1000 and ω = 0.01 (left panel of
figure 5) is very close to the result obtained with the continuous growing
model, even though ω = 1 for the continuous model. The only noticeable
difference is that the agent model shows additional secondary clusters at the
transitions between 2 and 3 and 3 and 4 primary clusters (for 1

2ϵ ∈ {2, 3}),
– The transitions take place at lower values of 1

2ϵ when the initial number of
agents is N0 = 5 (right panel) than when N0 = 1000. Indeed, for N0 = 5,
three transitions are observable: between 1 and 2 primary clusters, for
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Average cluster positions and numbers for the agent model with standard influence

N0 = 1000, ω = 0.01, T = 200 N0 = 5, ω = 1, T = 500
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Fig. 5 Positions of clusters (top panels) and average number of clusters (bottom panels)
from the agent model for initial number of agents N0 = 1000, ω = 0.01 and after T = 200
iterations (left panel) and N0 = 5, ω = 1 and after T = 500 iterations (right panel). The
positions of the clusters (top panels) are the average for the most frequent configuration
defined by the number of primary clusters over 100 replicas (for each value of ϵ). The average
number of clusters (bottom line) is performed on all configurations. The left panel shows
the average number of primary clusters, the right panel the average number of secondary
clusters. The definition of the clusters with their effective weight is the same as in Figure 4.

1
2ϵ ∈ [1.5, 1.75], between 2 and 3 primary clusters for 1

2ϵ ∈ [2.5, 2.75] and
between 3 and 4 primary clusters for 1

2ϵ ∈ [3.75, 4]. For N0 = 1000, only
two transitions are observable: between 1 and 2 primary clusters, for 1

2ϵ ∈
[1.75, 2], between 2 and 3 primary clusters for 1

2ϵ ∈ [2.75, 3].

These observations suggest that, in general, a low initial number of agents
N0 leads to a higher number of primary clusters in the most frequent configu-
ration (for a similar average number of agents ωN0 added at each iteration).

This observation is completed by the bottom panels of figure 5 showing
the average number of clusters for all the configurations. Indeed, the left panel
shows that the average number of primary clusters is a bit higher for N0 = 5
than for N0 = 1000. However, on the contrary, the right panel shows that the
number of secondary clusters is generally higher for N0 = 1000. This suggests
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that, for N0 = 5, when the the primary clusters are more numerous, they tend
to be too close to each other for allowing the emergence of secondary clusters.

4 Simulations with the smooth influence function

On Figure 6, the top panels show the positions of the clusters when ϵ varies for
the continuous model and the bottom panels show the simulation (growing and
not growing) for ϵ = 0.2. It is striking that the secondary clusters are almost
absent in the non-growing case. There are some additional secondary clusters
in the growing case, which are located at the extremes of the opinion inter-
val. Moreover, the transitions between configurations of numbers of primary
clusters take place at lower values of 1

2ϵ than with the standard influence.
These results suggest that the additional secondary clusters found in the

growing case with smooth influence are generated by a different process than
the one generating the secondary clusters in the non-growing case, which seems
mainly due to the discontinuity of the standard influence function.

Figure 7 is the equivalent of figure 5 , replacing standard influence with
smooth influence. It shows the average positions of the clusters of the most
frequent configuration over 100 replicas of simulations of the agent model (top
panels) and the average number of primary and secondary clusters (bottom
panels). The left top panel shows the results of the simulations for an initial
number of agents N0 = 1000 and adding on average ωN0 = 10 agents at each
iteration, while the right top panel shows the results for N0 = 5 and adding
on average ωN0 = 5 agents at each iteration.

The average positions of the clusters of the most frequent configurations are
similar in these top panels. The main difference is that the transition between
1 and 2 primary clusters takes place for 1

2ϵ ∈ [1.5, 1.75] for N0 = 1000, like
the continuous model, and for 1

2ϵ ∈ [1.25, 1.5] for N0 = 5. The transitions
from 2 to 3 and from 3 to 4 primary clusters take place in the same intervals
1
2ϵ ∈ [2.25, 2.5] and 1

2ϵ ∈ [3.25, 3.5], like in the continuous model.
The positions of the secondary clusters are not regular, probably because in

general only a small part of the secondary clusters that are visible on the figures
are present in each configuration participating in the average. For instance, for
N0 = 1000 and 1

2ϵ = 3.75, the average number of secondary clusters is 0.65.
Therefore, in most of the simulations, there is only one secondary cluster. As a
consequence, each position of secondary cluster is averaged on a small sample,
which explains the irregularities.

The average numbers of primary clusters on all the configurations (left
bottom panel) are very similar for N0 = 1000 and N0 = 5, the number being
slightly higher for N0 = 5. Note that the number grows almost linearly for
1
2ϵ > 2.5.

There are more differences in the average numbers of secondary clusters
(right bottom panel). Most of the time, the average number of secondary
clusters is smaller for N0 = 5, which seems difficult to explain only by the small
difference of the number of primary clusters. Hence this point may require
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Cluster positions for the continuous model with smooth influence
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Fig. 6 Positions of clusters for the smooth influence from the continuous approximation
for both growing and non growing cases for different values 1

2ϵ
. The clusters are defined like

previously and they are computed at the last iteration of the simulation (T = 200).

further investigations. Overall, the number of secondary clusters is significantly
lower with the smooth influence than with the standard influence, suggesting
that the secondary clusters are emerging only because of the regular arrival of
new agents in locations of the opinion interval that are not under the influence
of a primary cluster.

5 Discussion

This research is still ongoing. Nevertheless, it already reached some conclu-
sions about the bounded confidence model on a growing population. In this
section, we summarise the results that seem established and the remaining
open questions.
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Average cluster positions and numbers for the agent model with smooth influence

N0 = 1000, ω = 0.01, T = 200 N0 = 5, ω = 1, T = 500
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Fig. 7 Positions of clusters (top panels) and average number of clusters (bottom panels)
from the agent model for initial number of agents N0 = 1000, ω = 0.01 and after T = 200
iterations (left panel) and N0 = 5, ω = 1 and after T = 500 iterations (right panel). The
positions of the clusters (top panels) are the average for the most frequent configuration
defined by the number of primary clusters over 100 replicas (for each value of ϵ). The average
number of clusters (bottom line) is performed on all configurations. The left panel shows
the average number of primary clusters, the right panel the average number of secondary
clusters. The definition of the clusters with their effective weight is the same as in Figure 4.

The behaviour of the bounded confidence model on a growing population
is significantly different from the noisy version of the model because the dis-
tribution of agents tends to a density with several fixed peaks (primary and
secondary), while in the noisy bounded confidence, this is generally not the
case [7,8]. From our simulations, it seems that the model can reach differ-
ent steady states, like the model on a fixed population, depending on random
events taking place in the initial phase of the simulation. However, it is difficult
to check the model on very long simulations as the number of agents keeps
growing.

The most striking novelty of the model on a growing population is the sys-
tematic emergence of secondary clusters, which are larger and take place more
systematically than when the population is fixed. Nevertheless, when consid-
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ering the continuous versions of the agent models, the maps of the primary
and secondary clusters when the confidence bound varies are similar. This may
suggest that the secondary clusters appear with a similar process whether the
population is growing or not, the growing population simply reinforcing an
existing process.

The results obtained with smooth interactions suggest otherwise. Indeed, in
this case, the model on a fixed population shows almost no secondary cluster,
while the secondary clusters are as still present in the simulations of the model
on a growing population, albeit less systematically.

This suggests that, when the population is fixed, the secondary clusters
are generated by the discontinuity of the standard influence and, when the
population is growing, they come from another process. At this stage, our
hypotheses about these processes are the following:

– The standard influence function shows its maximum effect at the border
of the attraction basin of a shaping cluster. As a result of this strong
attraction, the density of opinion is likely to be depleted inside the basin
in the vicinity of its border. Therefore, the opinions located just outside
the attraction basin can become isolated from the opinions within the
basin are thus not being attracted. This situation does not occur with the
smooth influence function, because the opinions located at the border of
the attraction basin move slowly and have more chances to remain close
enough to attracted opinions beyond the border while the opinions are
progressively gathering into a peak.

– With both standard or smooth influence, the primary clusters are often
further than 2ϵ from each other or further than ϵ from the limit of the
opinion interval. This leaves some regions of the opinion interval which are
not under the influence of a primary cluster. When the population is grow-
ing, the opinions that are regularly recruited in these areas, progressively
feed secondary clusters.

– These secondary clusters can maintain themselves only if they are signifi-
cantly smaller than their neighbouring primary clusters. Indeed, the regular
arrival of new opinions in a shared zone of influence is likely to generate
a lot of interactions back and froth between the clusters that bring them
closer and closer until they ultimately merge. However, if one of the clusters
is much smaller than the other, an opinion arriving in their common zone of
influence has a very high chance to be attracted only by the bigger cluster.
Therefore, the repeated back and forth interactions are very unlikely and
both clusters can maintain themselves. Moreover, their difference in size
keeps increasing, because the bigger cluster is more likely to attract the
new agents (this process resembles the ”preferential attachment” in social
networks).

– Finally, we showed that varying the initial number of agents in the popula-
tion leads to significantly different results. In particular, when this number
is small (e.g. 5 to 10), the model shows a first phase during which the po-
sition of the primary clusters can change significantly, possibly because of
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interactions with secondary clusters. These phenomena would be interest-
ing subjects for future investigation.

6 Appendix: measuring primary and secondary clusters

The method for measuring the clusters in a distribution of opinions involves
three main steps:

– Computing a smooth distribution with Gaussian kernel operator of vari-
ance about αϵ (we generally choose α = 0.1),

– Selecting the local maxima of the smooth distribution that dominate the
distribution in a vicinity of βϵ ’we generally choose β = 0.5),

– Computing the effective weight of each local maximum as its weight mul-
tiplied by the effective number of clusters.

We now describe each step in more details.

6.1 Computing a smooth distribution with a Gaussian Kernel

Let A = (a1, ..., aN ) be the distribution of opinions. Let (x1, ..., xp) be such
that for i ∈ (1, ..., p), xi is the middle of interval [ i−1

p , i
p ]:

xi =
i− 0.5

p
. (3)

For any number x, let the Gaussian function G(xi, x) be:

G(xi, x) = exp

(
−
(
x− xi

αϵ

)2
)
. (4)

For each xi, the smoothed distribution value is defined as:

S(xi) =

N∑
j=1

G(xi, aj). (5)

This smoothing erases strong irregularities of the histogram of opinions
and provides a more accurate view of the respective weights of the clusters
than when associating the clusters to the maxima of the opinion histogram.

6.2 Selecting local maximums of the smooth distribution and computing the
effective weight of each of them

The couple (xi, S(xi)) defines a local maximum of the smoothed distribution
if, for all j ̸= i such that |xi − xi| < βϵ, S(xj) < S(xi).

Let (xi1 , ..., xim) be the set of values defining the local maximums and wij ,
the weight of the maximum is:
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Distribution (red) smoothed (blue) Power of clusters for 100 runs

Opinions Opinions

Fig. 8 On the left panel, an illustration of the method for computing the clusters. The red
curve is the distribution of the opinions, the blue curve is the smoothed distribution, the
dark green points are the detected local maxima. The powers of these maxima are in the
order from left to right: 0.02, 1.02, 0.04, 1.05, 0.01. The right panel shows the distribution
of the values of the cluster powers for 100 simulations for ϵ = 0.2, N0 = 5, ω = 1 at T = 100
rounds.

wij =
S(xij∑m
k=1 S(xik

. (6)

From weights, we compute ng the effective number of clusters [15] as fol-
lows:

ne =
1∑m

k=1 w
2
ik

. (7)

If there are n clusters of the same weight 1
n , then ne = n, and if there are

major clusters and minor clusters, ne tends to be close to the number of major
clusters.

The effective Wij of maximum ij is finally defined as:

Wij = newij . (8)

In general, the primary clusters define local maxima with a power around 1,
while for the secondary clusters the corresponding power is lower than 0.2. In
the example shown on the right pane of figure 8, there are no clusters of power
comprised between 0.2 and 0.7. Therefore, the approach discriminates well
between secondary (low effective weight) and primary (high effective weight)
clusters.
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