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Abstract. During the global SARS-CoV-2 pandemic models played a
prominent role in predicting the near- and mid-term course of the pan-
demic as well as in helping governments to evaluate the effect of inter-
ventions or the lack thereof. While usually a number of different models
and modelling approaches were used, in most cases the various aspects
that affect the system dynamics, such as disease and transmission prop-
erties, immunity due to infection and vaccination, behaviour changes in
the population due to the spread of official and unofficial information
as well as government interventions and the evolution of the pathogen
itself were only modelled in subsets. Here we show that interactions be-
tween interventions, behaviour and evolution can lead to substantially
different dynamics than any subset of these factors. We use a proto-
type co-evolutionary simulation in which a simulated virus continually
evolves as the agent population alters its behaviour in response to the
perceived threat posed by the virus as well as to government interven-
tions. Both intra-host and inter-host evolution are simulated. The model
shows that evolution can dramatically alter the effect of individual be-
haviour and policies on the spread of a pandemic. In particular only a
small proportion of non-compliance with policies is sufficient to render
countermeasures ineffective and lead to the spread of highly infectious
variants.
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1 Introduction

The global SARS-CoV-2 pandemic has demonstrated the utility of statistical
and compartmental simulation approaches to predicting the near- to mid-term
behaviour of the pandemic [1,10], and agent-based modelling provided useful
platforms for evaluating the efficacy of numerous potential and actual policy
interventions [3,5]. However, generally these models included some subset of the
epidemiological properties of the virus, potential behavioural responses in the
population, the possible effects of public health interventions, and viral evolu-
tion, but at the time of writing, no current models include all these elements
simultaneously.
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The rapid and continual emergence of new SARS-CoV-2 variants has high-
lighted the need for greater understanding of the dynamics of viral evolution.
While many theories exist as to how these variants emerge, the precise origins of
the most successful variants are still uncertain [11,2]. After the emergence of the
Omicron lineage, and the recombinant XBB strains, transmissibility of the virus
has seemed to reach a peak; as a result, the latest variants are demonstrating
increased antigenic drift [13]. Given that SARS-CoV-2 spreads highly effectively
during the incubation period and via asymptomatic infections, new variants with
highly increased virulence could emerge without negatively affecting the fitness
of the virus; the appearance of such variants could present a very serious threat
to global public health [8].

Despite the importance of furthering our understanding of the evolutionary
behaviour of SARS-CoV-2, very few models have included evolutionary com-
ponents to simulate the emergence of new variants. In addition, while SARS-
CoV-2 has shown significant diversity within individual hosts [12,7], the impact
of within-host evolution has been largely ignored. Zhang et al. [14] produced an
abstract model of intra- and inter-host evolution, but the model did not simulate
individual behaviours or their impact on evolution; Mellacher’s [9] evolutionary
model is significantly more detailed, but once again individual behavoural re-
sponses are not modelled.

In this paper we present an early-stage agent-based model that models hu-
man behavioural change in response to the pandemic and related policy in-
terventions, and the subsequent impact of these changes, both voluntary and
policy-mandated, on viral evolution. The model includes both intra-host and
inter-host evolution; viral mutations can generate changes in both antigenicity
and infectivity. Model results show that the inclusion of viral evolution can dra-
matically alter the impact of policy interventions, suggesting that modelling of
future SARS-CoV-2 variants and other possible pandemics must include all these
elements to present a more realistic picture of the potential outcomes of policy
interventions.

2 Methods

We implemented an agent-based simulation of the spread of an infectious disease
in an urban area. The model and the data analysis are implemented in Julia.
The source code for the simulation as well as detailed documentation is available
at https://doi.org/10.5281/zenodo.8147244.

2.1 Environment

The simulated environment consists of a simplified town consisting of a grid of
100x100 buildings of different types. Agents live in residential buildings, they
work or study in commercial buildings and schools, depending on whether they
are adults or children respectively, and they spend free time in leisure buildings.
Randomly generated public transport links connect areas of the map, allowing

https://doi.org/10.5281/zenodo.8147244
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agents to move around the map. Agents are always present at either a building
or on public transport.

2.2 Population and agent properties

Buildings are generated to fill the available area according to fixed ratios between
building types (113 schools, 1589 commercial buildings, 50 leisure buildings).
Population size is calculated from the number of available residential buildings
according to a given density, which in our simulations results in a population of
roughly 19,000 agents.

A proportion of 17% of the population are designated as children. Each agent
has a randomly assigned home and school or place of work, and 5 randomly-
selected preferred places of leisure. All agents living in the same house are con-
sidered members of the same family. Friendship connections are generated as a
random network with degree k = 15.

2.3 Agent behaviour

Each agent follows a daily schedule with some stochastic variation in timings.
During weekdays agents leave their home in the morning, travel to their place of
work or school by public transport, if closer than 4 houses, or independently, and
return home in the afternoon. On weekends, agents have a given probability of
travelling to one of their preferred leisure centres, again using public transport
if available.

An agent’s response to the simulated epidemic varies according to their in-
dividual level of virus awareness. The change in awareness in each time step is
calculated as

∆a = −0.05a+
∑

(1− a)ωisi

Where for each group out of self, family and friends, s is the proportion of symp-
tomatic individuals and ω is the weight of the corresponding group. An individ-
ual’s probability to abstain from a specific activity pA (work/school, leisure or
public transport) is determined by the individual’s awareness a and the general
activity-specific level of caution cA:

pA = a1/cA

If government policies are in effect, agents decide whether to follow the official
guidance based on their individual level of compliance. The level of compliance
varies according to the scenario being tested.

2.4 Virus evolution

Virus evolution is modelled in two parts. For the evolution of inter-host fitness
we implemented a slightly more mechanistic version of a recent model on the
evolution of inter- and intra-host fitness [14,4]. Briefly, we assume that effects of
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mutations on inter- and intra-host fitness are not correlated and that therefore
the evolution of inter-host fitness between transmission events can be described
as a random walk. On transmission a value for inter-host fitness is picked from
the resulting random distribution and is used as the starting value for the newly
infected host’s population.

To model immunity and immune-escape we implemented a very simple antigen-
antibody system. The virus antigens are represented as 5 numbers out of (1, 100).
As long as a host is infected antigens mutate with a constant rate. When a new
host is infected the antigens are copied over identically.

At the beginning of each simulation run, 100 randomly-selected agents are
infected with the same (genetically identical) random virus.

2.5 Transmission and immune response

If more than one agent is present in a building or compartment of public trans-
port, encounters can take place. An encounter between an infected and an un-
infected agent can lead to infection. The probability that a given host infects an
uninfected person during an encounter is calculated from the mean inter-host
fitness of its virus population f as:

pI = 1− (1− pI,0)
r+f ·(1−m)

where r is the individual’s risk level (e.g., due to immune issues) and m is a
possible mitigation effect (0.5 if a mask is worn, 0 otherwise).

On infection inter-host fitness and antigenic properties of the infecting host’s
virus population are copied over to the infected individual. The host’s immune
system then starts generating antibodies by generating an approximate copy of
a sub-sequence of two of the virus’ antigens.

The strength of the immune reaction, i.e. the number of antibodies of a spe-
cific type produced, changes over time. In each time step all of the antibodies
a host “knows” are matched against the virus antigens. If the match is above a
specific threshold, the strength of that particular immune reaction grows, oth-
erwise it decreases. If the reaction strength decreases below a given threshold
that antibody is removed entirely. New types of antibodies are generated if no
existing antibody matches well enough.

The strength of the overall immune response is calculated from the match m
and strength of reaction s of a host’s antibodies as:

I = 1−
∏

1−misi

Agents recover with a constant probability per time step discounted by their
risk, as well as when immune response (again discounted by risk) is higher than
a given threshold.

Infected agents start developing symptoms with a constant probability per
time step.
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2.6 Health behaviours and policies

We simulate a simple form of government in the form of a general level of alert-
ness and different policies that can be triggered if alertness crosses certain thresh-
olds. The alert level increases by a set amount if the proportion of symptomatic
individuals in the population exceeds a specific threshold; decrease similarly is
determined by its own threshold and amount of change. Three policies are im-
plemented in the current version: self-isolation for sick agents; mask mandates;
and a general lockdown (all agents stay home at all times). Agents follow these
rules according to their individual disposition (see above).

2.7 Optimal policies

For a given scenario we determined the best policy by optimising the seven pa-
rameters that determine a policy (thresholds and amount of change for increase
and decrease of alert level; alert level thresholds for the introduction of self-
isolation, mask wearing and full lockdown) using an evolutionary algorithm. In
the standard scenario we assumed that the quality of a policy is simply deter-
mined by the number of infected agents Ninf after one year:

q =
N

Ninf + 100

In the policy costs scenario we also simulated the political costs incurred by
interventions (such as effects on the economy, population mental health or policy
acceptance). We did this by decreasing a policy’s quality with the number of days
that each of the three interventions was active (t∗), with lockdowns having the
strongest effects and mask mandates the weakest.

qc = q · (1− 20tlockdown + 5tmasks + tisolation
26

)

3 Results

We find that, as expected, overall the proportion of infected individuals decreases
with stricter policies, higher caution and and better compliance with the rules,
and that an evolving pathogen leads to worse outcomes in term of number of
infected individuals (see Figure 1).

Within that general pattern, however, interactions between factors dominate
the behaviour of the system. Without evolution, policy is the factor that has
the strongest effect on the outcome - neither changes in cautiousness nor com-
pliance lead to substantial changes in the proportion of infected individuals. If
evolution is included, infection rates are generally higher and - in contrast to the
non-evolution scenario - do not appear to reach equilibrium (see Figure 1, right
hand side). This effect is amplified dramatically when compliance is not perfect
(Figure 1, bottom panels). Similarly, cautious behaviour has a much stronger
effect if the pathogen evolves and at the same time compliance is not optimal.
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Fig. 1. Left: proportion of infected individuals dependent on policy, behaviour and evo-
lution. Final (box plots) and average (dots) proportion of infected individuals shown (10
replicates per scenario). Right: Proportion of infected individuals over time dependent
on evolution and compliance for medium cautiousness and average policy strictness (10
replicates).

Policy, on the other hand, can make an even bigger difference in evolution sce-
narios than in those without evolution if at the same time compliance is perfect,
while it becomes nearly entirely ineffective if evolution is combined with limited
compliance.

A similar picture emerges when we look at the best policies for a given
scenario (Figure 2). Under perfect conditions, that is when interventions bear no
costs, similar strict policies clearly win out in all scenarios (see Figure 2, left).
As soon as interventions are not free, however, the best government strategy
depends on the specifics of the scenario (see Figure 2, right).

4 Discussion

Our simulations show that in isolation, the effects of individual behaviour, gov-
ernment policy and pathogen evolution play out very much as expected. When
seen in combination, however, a more complicated picture emerges and interac-
tions between different factors become important.

Most notably, the inclusion of viral evolution significantly alters the poten-
tial efficacy of public health interventions to control transmission. With even
small reductions in compliance, infection rates increase dramatically, and the
interventions fail to contain the evolving pathogen.

Our results show that as soon as political decisions are not free there is no
single policy that is optimal for all possible scenarios. The best decision can
therefore only be made if a combination of epidemiological, evolutionary, social
and political aspects is taken into account.

At this point our model is not calibrated to any real system and can there-
fore not support quantitative statements. What we expect, however, is that the
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Fig. 2. Optimal policies if interventions are free (left) and if they are costly (right).
Top panels show optimal threshold values for infection rates at which to start changing
alertness; bottom panels show optimal threshold values for alert levels at which to
implement interventions (blue: full compliance, yellow: 90% compliance).

overall dynamics that we observe are in principle applicable to real-world sys-
tems. We can therefore make no recommendations concerning best strategies for
a given situation, based on our results. We can, however, qualitatively state that
any policy decision in a pandemic situation that relies only on purely epidemio-
logical modelling or even on separate modelling of epidemiological, behavioural
and political aspects is likely to be sub-optimal.

In future work, however, we do intend to calibrate the model to reflect the
real-world properties of SARS-CoV-2 in terms of its antigenicity, transmissibility,
and the historic emergence of prior variants. This will allow for systematic testing
of realistic policy scenarios in real-world situations [6].

We propose that future models of SARS-CoV-2 variants or future pandemics
should adopt a whole-systems approach. Our models demonstrate that without
including the effect of human behavioural change on the pathogen itself, policy-
makers may make key decisions regarding containment policies that could fail
dramatically in the longer term. In that sense, the present situation with SARS-
CoV-2 is illustrative: the emergence of Omicron during a period of lesser public-
health restrictions led to an enormous increase in infections worldwide, resulting
in a state in which infection rates remain high in much of the world, and the
potential for new variants with higher virulence remains a potential threat.

As we review the global response to the SARS-CoV-2 pandemic, the role
of modelling was and will continue to be critical in shaping our response to
future challenges, either from SARS-CoV-2 itself or other pathogens. We suggest
that future modelling of containment strategies must account for not only near-
term viral transmission and behaviour change, but also longer-term interactions
between viral evolution, behavioural change and intervention compliance.
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