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Abstract. Exposure to particulate matter (PM) is a significant public health issue. 

Estimates of exposure show the amount of PM in the vicinity, but not how much 

enters the body through respiration. A calculated dose that considers inhalation 

rate as a variable can be estimated based on a person's heart rate, providing more 

context on the effects of activities, microlocations, and personal characteristics. 

This work presents an agent-based model (ABM) based on the design of the 

ICARUS project, measuring exposure to PM in an urban context using personal 

monitors. A simplified virtual (urban) environment was constructed to simulate 

the behavior of individuals and assess their PM dose. Interactions between agents 

were based on how they influenced each other on commuting options. Special 

agents, called "activists," had a higher influence on other agents to opt for walk-

ing/cycling. Agents were assigned personal environments (homes), workspaces, 

and leisure spaces, and had access to 10 different activities. PM concentration 

and intensity rate were assigned to each activity. PM concentrations were calcu-

lated for each activity, and the total dose was calculated for each individual. As 

outdoor PM concentrations increase, the influence of activists on mobility be-

comes more important, leading to an increased PM dose for non-activists. The 

model demonstrates the potential of ABMs in understanding how complex inter-

actions between individuals impact their PM exposure and dose. 

Keywords: Particulate matter, inhaled dose, exposure assessment, mobility in-

fluence, agent-based model 

1 Introduction 

A large majority of the urban population in the EU were exposed to levels of particulate 

matter (PM) above the latest World Health Organization guidelines [1]. Exposure to 

elevated concentrations of PM is associated with an increased risk of various illnesses 

and premature death. Exposure is defined as contact between an agent (PM) and a target 

(person), such as inhalable PM, which is inhaled through the nose and mouth [2]. The 

mass of PM that enters is the intake dose or simply the dose. Calculating the dose with 

inhalation rate as a variable can provide more information on the effect of activities, 

microlocations, indoor/outdoor exposure, and personal characteristics. Inhalation rate, 

expressed as minute ventilation (amount of air that enters the lungs per minute), can be 

estimated based on heart rate [3]–[5]. 

The use of personal monitors in exposure assessment has become more prevalent in 

recent years. The Horizon 2020 project ICARUS2020 [6] used low-cost personal mon-

itors to measure exposure to PM in an urban context, including the city of Ljubljana, 

Slovenia [7]. In the scope of the sampling campaign in Ljubljana, 82 participants col-

lected data in two seasons (heating/non-heating). They were equipped with multiple 



2 

monitors, including a wrist-worn biometric sensor Garmin Vivosmart 3 Smart Activity 

Tracker, and a personal PM monitor (the PPM) designed for the project. Validation 

reports showed that these devices provide adequately accurate data [8]–[11]. 

Determining exposure to PM in urban environments is influenced by various factors, 

including the time spent outdoors and the type of activity being performed. Vigorous 

outdoor activities can increase an individual’s PM exposure and dose [12], [13]. Walk-

ing or cycling in an urban environment is associated with an elevated dose of PM, due 

to high respiratory rates [14], and proximity to motorized traffic [15]. On average, 

health benefits of active commuting, due to increased physical activity, outweigh the 

increased exposure to air pollution and a higher dose of particulate matter [16]. Accu-

rately assessing an individual’s dose presents a complex challenge, requiring a multi 

parameter and multi domain approach. Virtual environments and agent-based models 

(ABMs) offer a novel approach and a variety of tools to aid in exposure studies. 

Studies have demonstrated the use and applicability of ABMs in urban environ-

ments, for assessing exposure to particulate matter. Chapizanis et al. [17] developed an 

ABM, collecting data on the population, urban environment, movement and PM2.5 con-

centrations, informed by personal movement, location and temperature sensors. Emer-

gent behaviour in the ABM influenced PM exposure. A literature review on the same 

topic in Yang et al. [18] showed a shift towards using portable sensors. ABM research 

frequently simulates traffic interactions between different entities in urban environ-

ments and PM exposure studies [19], [20]. 

This work describes the construction and testing of an ABM based on the design of 

the ICARUS project. A simplified environment was constructed to simulate behavior 

in an urban environment and assess an individual’s PM dose. The inputs were based on 

publicly available population data. Interactions between agents were based on how they 

influence each other on the commuting option they choose, e.g., opting for cycling or 

walking, instead of using a car or bus. Special agents, called “activists”, had a higher 

influence on other agents to opt for walking/cycling, instead of using a car or bus. 

2 Methodology 

An analysis of how interactions between individuals influence commuting choices and 

impact an individuals’ PM dose was conducted in a simulated society, i.e., an ABM. 

After reviewing tools for building the ABM, NetLogo 6.3 [21] was selected due to its 

ease of adoption by non-software specialists, interactivity facilitated by the graphical 

user interface (GUI), and its combination of model description and coding tab in a sin-

gle interface. A virtual environment was constructed based on population data (and the 

design of the ICARUS campaign). Agents interacted to influence each other on which 

commuting option to select. 

2.1 Environment 

The environment consisted of a grid of personal (homes), work, and leisure spaces. 

Each individual was randomly assigned an empty home patch, surrounded with 8 



3 

patches representing different activities/rooms (excluding work and leisure). All house-

holds consisted of only one individual. There were the same number of home patches 

as agents, and 1/10 of this number of work and leisure patches. After being assigned a 

home patch, surrounded with activity patches, individuals randomly chose one work 

patch and one leisure patch. The latter changed at each step, simulating the individual 

choosing a different leisure activity/location each time. Their assigned work patch did 

not change in the same run. All the patches that the individual had access to represented 

10 different activities, selected based on the data collected in the ICARUS project. 

These activities were: smoking, cooking, cleaning, playing, resting, car-bus (driving a 

car, riding a bus), working, sleeping, sports_out (sporting activities outdoors, leisure 

activity), and foot-bike (walking or cycling). The number of individuals in the simula-

tion, share of each gender, the average age of the population, and the share of smokers 

was set in the Graphic User Interface (GUI). Individuals were probabilistically assigned 

a body weight and a baseline inhalation rate, based on information obtained from the 

EPA Exposure Handbook [22]. 

Each room/activity was probabilistically assigned a PM2.5 (in this work labelled as 

PM) concentration every time that the individual performed that activity. All mean PM 

values and standard deviations could be set in the GUI. For the purpose of this experi-

ment the mean PM concentrations for each room/activity were collected from published 

research, with an associated standard deviation. Each individual was probabilistically 

assigned a baseline minute ventilation (inhaled air per minute), based on their gender 

and age [22]. This value (in m3/min) corresponded with a Metabolic Equivalent of Task 

(M.E.T.) of 1, which is the M.E.T. during sleeping or resting. Minute ventilation line-

arly increases with an increasing M.E.T. value, when activities become more strenuous. 

Each activity has a range of M.E.T., depending on the vigor involved [23]. Accordingly, 

based on the activity/room, an intensity rate was assigned, corresponding with the 

M.E.T. or how physically intensive the activity is [22]. Minute ventilation during a 

specific activity is calculated by multiplying the baseline minute ventilation with the 

intensity rate. 

Outdoor PM concentrations, which set the PM exposure level for leisure and walk-

ing/cycling, were set in the GUI. For this experiment the PM2.5 data was collected from 

the Bežigrad governmental air quality monitoring station in Ljubljana, Slovenia, oper-

ated by the Slovenian Environmental Agency. Infiltration factors of outdoor air were 

not included in the ABM. 

The PM dose was calculated using i) the minute ventilation (𝑉̇𝐸), ii) the intensity of 

the current activity (𝑖𝑛𝑡𝑎𝑐𝑡), and iii) the PM pollution level at that activity (𝑐𝑃𝑀2.5
), 

shown in Equation (1): 

𝑖𝑛𝑡𝑎𝑘𝑒 𝑑𝑜𝑠𝑒 𝑝𝑒𝑟 𝑘𝑔 𝑜𝑓 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 =  
𝑉̇𝐸 ∗ 𝑖𝑛𝑡𝑎𝑐𝑡 ∗ 𝑐𝑃𝑀2.5

𝑏𝑜𝑑𝑦 − 𝑤𝑒𝑖𝑔ℎ𝑡
 (1) 

Share of smokers, average age, and share of each gender in the simulated population, 

in this specific scenario, based on the ICARUS campaign, were determined using pop-

ulation data for Slovenia. In the ICARUS campaign individuals collected data for up to 

7 days per season. The same limit was applied in the ABM. As the decisions in this 

model were based on a predetermined set of probabilities for activities, each tick/step 
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was considered as an iteration. The model ran for 368 hours with 168 hours used as the 

simulation result. The first 200 hours were discarded to eliminate the initial transient 

period or "burn-in" phase, where the system is still stabilizing and reaching equilibrium. 

High fluctuations of the inhaled dose were observed in the first 200 hours, most prob-

ably attributed to the burn-in phase.  

Fig. 1 shows a virtual spatial representation of the ABM. Sliders for different settings 

are placed on the left side of the interface. Buttons (placed below the sliders) setup the 

model, e.g., create the patches, agents and their properties, and start the simulation. 

 
Fig. 1. Virtual spatial representation of the PM exposure and dose ABM with the initial set-

ting, at 368 hours in the NetLogo GUI. 

2.2 Interactions 

This simulated environment includes single person households, with agents coming in 

contact with other agents only on leisure and work patches. Walking and cycling play 

an important role in this assessment due to the associated elevated minute ventilation, 

influencing the dose. Therefore, the agents in this model influence decisions of other 

agents related to walking/cycling. Human behavior and opinions are, among others, 

driven by interactions with other individuals, in particular by two major attractors: (1) 

the expert effect, with highly confident individuals, and (2) the majority effect, a critical 

mass of people sharing similar opinions [24]. Studying these interactions could provide 

valuable insights into how the dynamics of mutual influence, the significance of inter-

action points, and the emergence of collective behavior influences PM exposure and 

dose. 

Special agents, called “activists”, prompt other agents to reduce their probability 

of choosing a car/bus to commute, opting for walking/cycling. Two settings in the 
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model GUI determine the initial influence of activists: (1) share-of-activists, determines 

the number of agents labeled as activists, and (2) activist-influence, determining how 

persuasive the activists are. Share of activists can range from 0 to 50 % of the popula-

tion, and their influence from 1.0 to 2.0. All agents that are labeled as activists receive 

a random value of influence between 1 and 10, all non-activist agents begin their life 

with an influence level of 0.1. Whenever an agent is in a same place with another agent 

(on leisure/sports and work/office patches) they “are influenced”, and the influence var-

iable value increases. If the second agent is an activist, the first agent receives their full 

influence value (𝑚𝑏𝑖𝑛𝑓
𝑎𝑐𝑡), multiplied by activist-influence (𝑎𝑐𝑡𝑖𝑛𝑓), which is added to 

their prior mobility influence (𝑚𝑏inf), as shown in Equation (2) 

𝑚𝑏inf(𝑛𝑒𝑤) = 𝑚𝑏𝑖𝑛𝑓(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔) + (𝑚𝑏𝑖𝑛𝑓
𝑎𝑐𝑡 ∗ 𝑎𝑐𝑡𝑖𝑛𝑓) (2) 

When the other agent is a non-activist, they receive only 1/3 of the influence 

(𝑚𝑏𝑖𝑛𝑓
𝑛𝑜𝑛−𝑎𝑐𝑡), added to their existing mobility influence (𝑚𝑏inf) (Equation (3)): 

𝑚𝑏inf(𝑛𝑒𝑤) = 𝑚𝑏𝑖𝑛𝑓(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔) + (
𝑚𝑏𝑖𝑛𝑓

𝑛𝑜𝑛−𝑎𝑐𝑡

3
) (3) 

Each hour all non-activists that have >1.1 influence lose 1 influence, as their interest 

falls. If they have influence between 0.1 and 1.1, they lose the appropriate amount to 

get back to 0.1. In this way the model attempts to reflect how individuals can lose in-

terest with time, due to memory decay, changing circumstances, new experiences re-

placing prior ones, or reaching an influence saturation point. If the agents would not 

lose influence, the model would not function well, as the influence would keep increas-

ing exponentially or quickly reach a set upper limit. An exception is after they randomly 

meet an activist at a leisure or work space. In this case, the activist influences their 

behavior, and they lose their influence more slowly. This corresponds with activists 

being more persuasive, having better arguments, and being generally verse in the meth-

ods to influence others. The rate is determined (Equation (4)) by the number of hours 

that have passed (ℎ) since the last meeting, multiplied by activist-influence (𝑎𝑐𝑡𝑖𝑛𝑓). A 

baseline value of 6 hours is set, which can increase to 12 hours when the activist-influ-

ence (which can be set in the GUI between 1.0 and 2.0) is set to 2.0. If an agent comes 

in contact with an activist, their mobility influence will decrease by 1/6 in the first hour, 

1/5 the second, 1/4 the third, and so on, until the (ℎ) drops to 1. This diminishing influ-

ence reduction follows the notion that activists have a higher power of persuasion, thus 

having a longer influence on individuals. For the model to work, the agents have to 

keep losing the influence, and 1/n value has been determined as a “good compromise”. 

The agent will resume losing their mobility influence at the rate of 1 per hour after the 

next encounter with a non-activist agent. 

𝑚𝑏inf(𝑛𝑒𝑤) = 𝑚𝑏𝑖𝑛𝑓(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔) − (
1

ℎ ∗ 𝑎𝑐𝑡𝑖𝑛𝑓

) (4) 

Activists cannot gain or lose influence, and the minimum and maximum values of 

influence for any non-activist agent are 0.1 and 10, respectively. 
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The mobility influence value affects the probability of the agent choosing a means 

of transport. A higher value increases the probability of selecting cycling/walking ver-

sus using a car/bus. Each agent is assigned a probability for both activities based on 

population data and their age and gender. Their baseline probability for choosing the 

foot/bike (𝑝𝑓𝑏) or car/bus (𝑝𝑐𝑏) activities is modified (𝑝𝑓𝑏(𝑚), 𝑝𝑐𝑏(𝑚)) based on the 

agent’s mobility influence (𝑚𝑏inf) at time of choosing as evident in Equation (5) and 

Equation (6). 

𝑝𝑓𝑏(𝑚) = (𝑝𝑓𝑏 + 𝑝𝑐𝑏) ∗ ((
𝑝𝑓𝑏

𝑝𝑓𝑏 + 𝑝𝑐𝑏
) + (1 − (

𝑝𝑓𝑏

𝑝𝑓𝑏 + 𝑝𝑐𝑏
)) ∗ (

𝑚𝑏inf

10
)) (5) 

𝑝𝑐𝑏(𝑚) = (𝑝𝑓𝑏 + 𝑝𝑐𝑏) − 𝑝𝑓𝑏(𝑚) (6) 

Agents select an activity based on the modified probabilities and end their turn for 

that hour. The Behavior Space tool is used to iterate the model multiple times by sim-

ultaneously varying the share-of-activists, activist-influence and pm-outdoors varia-

bles. To observe the behavior of the modified ABM, the share-of-activists was varied 

from 0 to 0.5 by increments of 0.1, activist-influence was varied from 1.0 to 2.0 by 

increments of 0.1, and pm-outdoors was varied from 5 µg/m3 to 105 µg/m3 (maximum 

hourly value of PM2.5 recorded in Ljubljana in 2022), by increments of 10 µg/m3. Each 

combination of the aforementioned variables was repeated 10 times with a time limit 

of 168 hours. Runs were measured with several reporters, providing results of the cu-

mulative dose of all agents, of agents by gender and age, respectively, and if the agent 

was an activist or not. The results were exported to a csv file and analyzed in R [25], 

and plots were constructed using the ggplot package [26]. 

3 Results and discussion 

Results were aggregated for different populations based on the share of activists, shown 

in Fig. 2. Expectedly, the mean cumulative dose of all non-activist agents increased 

linearly with an increased outdoor PM. While concentrations remained low (< 15 

µg/m3), all populations experienced a similar mean dose. However, the lines in Fig. 2 

begin to diverge as PM concentrations increase. Activists influence agents to reduce 

their time in the car/bus and opt for cycling or walking, which increases their time out-

doors, increasing their exposure. Cycling and walking are more vigorous activities with 

an increased minute ventilation and PM dose. As the outdoor pollution increases, the 

mobility influence becomes a more important factor. Moreover, as the share of activists 

increases, the higher the mean mobility influence in the non-activist population. 
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Fig. 2. Mean PM dose of all agents at increasing levels of outdoor PM, grouped by the per-

centage of population that are activists. Each point is showing a calculated standard deviation. 

Fig. 3 shows an increased activist influence impacting non-activist agents in the 

modified ABM. In this figure, share of activists is set at 10%. As evident in Fig. 3, the 

mean dose is similar between the populations and begins to slowly diverge as concen-

trations of PM increase. Populations with more influential activists increase their mean 

dose faster than populations with less influential activists. The greatest contrast can be 

observed when PM levels exceed 95 µg/m3, though the difference is small with high 

overlap when standard deviations and considered. However, at the highest outdoor 

value, the group with 2.0 activist influence doesn’t show the highest mean exposure, 

which may be attributed to the stochastic nature of the ABM. Although 10 itera-

tions/runs produce more reliable outcomes, they can still produce extreme values that 

influence the final result. 

 

 
Fig. 3. Mean PM dose of all agents at increasing levels of outdoor PM concentrations, grouped 

by activist influence. Each point is showing a calculated standard deviation. 
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This model shows how interactions between individuals can influence an individ-

ual’s dose of PM. While it represents only one simplified interaction, influencing one 

specific activity, it does show the power of agent-based models and their ability to gain 

insight into otherwise difficult to assess phenomena. 

4 Conclusions and future work 

Given the inherent challenges in determining accurate PM exposure or inhaled dose 

estimates using traditional approaches or measurements, which are hindered by the dy-

namic nature of human movement and activities, our research took an alternative path. 

Recognizing the potential of agent-based modeling (ABM) to address these limitations, 

we adopted this approach to examine the impact of individual interactions on commut-

ing choices and subsequent PM dose. By constructing a virtual indoor and outdoor ur-

ban environment and simulating interactions among 100 agents, we obtained valuable 

insights. While ABM showcased promising advantages, it is important to acknowledge 

its limitations as well. With this in mind, our findings demonstrated that activists played 

a less significant role in lower PM levels, as all populations reported similar mean 

doses. However, as outdoor PM concentrations increased, a higher proportion of activ-

ists resulted in elevated doses. Additionally, we observed a similar, albeit less pro-

nounced, trend with increased influence of activists on non-activist agents. 

Currently, the agents in the model do not have a “memory” and select the next ac-

tivity based on predetermined probabilities for daily activities. A further development 

of this model would allow agents to adapt and learn based on their prior results with a 

“memory length” variable. Such a feature would allow the user to control how many 

prior activities influence the agent’s probabilities for their next action. Individual’s gen-

erally do not have real-time data about their personal exposure to PM. An updated 

model would implement an option to have a share of agents that are willing to change 

their behavior if they see that another strategy would reduce their dose. Gaining, losing, 

and transferring influence in the model are rough estimates that are designed in a way 

to make the model function properly. Future work should tune these variables based on 

real-world data. Furthermore, the outcomes of the model can be validated using the 

ICARUS data, to a degree. In the scope of an ongoing Horizon 2020 project, 

URBANOME [27], an urban living lab (ULL) will be set up in Ljubljana. This ULL 

will set up and assess how cyclists perceive the urban environment, and how their com-

mute impacts their exposure and wellbeing. Further development of the ABM and val-

idation of the current model is possible through an analysis of the cyclists’ decision-

making, and the paths they choose. 
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