
Agent-based Building Blocks Architecture (ABBA): How software
engineering can help computational social science models

Liz Verbeek1, Tatiana Filatova1, Amineh Ghorbani1, Martijn Warnier1, Igor Nikolic1

1Faculty of Technology, Policy and Management, Delft University of Technology, 2628BX Delft, The Netherlands

 Keywords: agent-based model, socio-environmental systems, reusability, human decisions

1. Introduction

Agent-based models (ABMs) have become increasingly popular across various applications. Over the 
past decades, the number of ABM publications has grown explosively in engineering, environmental 
and social simulation literature (Fig 1). As a result, the need for improvements in the modeling process
is growing. Specifically, more efficiency and transparency in code development [1], improvements in 
algorithmic representation of human behavior [2] and institutions and their alignment with social 
science theories are desired [3].

Fig 1. Number of peer-review articles and conference papers publishing about agent-based modeling
between 1993-2022 across the five most common subject areas. Publications were retrieved using

Scopus search query: “(TITLE-ABS-KEY(‘agent-based’) AND (TITLE-ABS-KEY(‘simulation’) OR
TITLE-ABS-KEY(‘model’))”.

In addition, ABM is increasingly picked up as a method by mathematics and engineering-related 
disciplines who may have limited experience with modeling human decisions and social processes. 
Yet, many of the agents we model in ABMs are humans, organizations, and social institutions. We are 
typically concerned with how to model their decisions, interactions, learning, adaptation or exchange 
of information, of experiences or of goods/services. Although much is argued on which social science 
theories are best suited for ABMs, there is little guidance on implementation in the model code. 
Standardization and documentation of ABM components representing social science concepts, both in 
terms of theories and processes as well as data required to capture in software code how these 
processes take place in reality, could thus be of importance not only to the field itself, but also to a 
larger community.

For over a decade, the ABM community has been contemplating the idea of reusing building blocks 
(RBBs) of code that are repeatedly employed across applications [4]. A modular approach with the 



core code standardized and tested is less error-prone, allowing ABM developers to focus more on 
modeling and ontologies of context-dependent human decisions, and less on coding. Furthermore, 
while theories conceptualizing human behavior and social institutions are vast, most of them operate 
with vague theoretical constructs. Their operationalization in code often remains a black box, 
depending on intuitive judgements of modelers. Instead of reproducing code for recurring decisions 
and theories, the community will benefit from learning based on experience and reusing code 
fragments that are tested across contexts.

2. Lessons from related fields

The standard documentation of module’s features in time, space and structure, clear ways to 
communicate underlying theoretical assumptions and data flows across such modules have been 
explored for process-based models in the environmental model integration community. ABMs, 
however, are different in including more direct empirical entities in combination with theoretical 
constructs. This requires new and alternative ways of modules’ standardization to make them 
reproducible and reusable.

From the field of software engineering, we learn that its main goal is to produce reliable, high-quality 
software that is easy to maintain [5, 6]. This aim is pursued in numerous ways, ranging from 
verification techniques such as code testing [7] and static analysis [8] to design methods such as model
driven architecture and design patterns [9]. Design patterns are a well-known method to assure code 
quality and reusability at the software design phase. They specify how common problems in software 
development should be addressed, helping developers to use well-known solutions for various 
standard situations. Typically, design patterns are abstract descriptions of known best practices that 
can be programmed in many ways, providing generic methods for developing high-quality software. 
However, agent-based development principles that support interoperability and reusability of high-
quality software enabled by design pattern principles are still scarce.

To address this gap, we propose an approach that combines design pattern principles with model-
driven software development (MDSD). MDSD offers a level of abstraction that provides an overview 
of the inner structure of the software and reduces the details required for development to the essence 
[10]. To develop executable software with this approach, a model is built using a high-level language 
called a meta-model. A software platform then takes some transformation rules to generate an 
executable software from the model. Following this approach can provide several benefits for social 
simulation, among which are 1) speeding up the development process by giving more structure to the 
software, 2) managing ‘complexity through abstraction’, since modeling languages enable 
‘programming’ at a more abstract level, 3) managing complexity through structure because modeling 
languages provide predefined placeholders for software components, 4) separating tasks in the 
simulation development process by splitting up the modeling and coding processes, 5) facilitating 
reuse and regeneration of simulation or its components because user knowledge becomes widely 
available in software format and 6) improving software quality, performance, maintainability and 
portability because the architecture of software may recur uniformly in the implementation [11].
A basic model driven approach is illustrated in Figure 2. A computational independent model (CIM) 
describes the context of the model at a conceptual level. A platform specific model (PSM) describes 
the realization of the conceptual model for a specific software platform. The transformation between a 
CIM and a PSM requires mapping modules that describe what each concept in the CIM is translated to
in a PSM. One option for such a mapping would be to introduce a platform independent model (PIM) 
to facilitate a model-to-code translation. A PIM focuses on the operation of a software system while 
hiding details necessary for a particular platform [11]. As illustrated in Figure 2, a PIM acts as an 



interface between a CIM and a PSM so that one CIM can be translated to many PSMs by defining 
only one mapping module between a CIM and a PIM. Defining a PIM meta-model can therefore make
the translation of an RBB meta-model platform independent so that RBBs can be translated to any of 
the already existing ABM platforms (e.g. NetLogo, Repast, MASON, etc.).
 

Fig 2. Platform independent modeling in MDSD, from Ghorbani (2013) [11].

3. Building block architecture

In Figure 3, we present an agent-based building block architecture following the MDSD approach. We
suggest for any such building block to contain: 1) Background & Purpose – describing a recurring 
design problem and its application in ABMs, 2) Key concepts, definitions and use of data – defining 
the standard vocabulary that applies to this design problem, theory or phenomenon, and, optionally, a 
description of how these concepts can be quantified using empirical data, 3) a detailed specification, 
including standardized input and output, a (standardized) classification of the building block (e.g. if it 
concerns a single agent, multiple agents, or agents interacting with the environment), 4) example 
implementations of this building block in (tested, verified and validated) existing ABMs. Elements 1-3
make up a CIM of the building block, connecting the implementation to existing (social science) 
theories and concepts, whereas the last element (4) form the PIM and PSM of the building block. As 
theoretical concepts can be implemented in models in several ways, every building block can consist 
of several PIMs, and in turn, as illustrated above, every PIM can map the CIM to multiple PSMs – 
here: implementations in different programming languages. In our proposed architecture, the PIM(s) 
of a building block consist of 1) a flow chart that visually describes the building block process(es), 2) 
the input parameters and output forming the necessary connections across modules, 3) a sequence 
diagram describing the position of this module in a full ABM and 4) algorithmic design in the form of 
pseudocode. In turn, this PIM can be mapped to PSMs multiple programming languages. Any PSM 
should be provided as a working, tested code example from an existing agent-based model, with 
references to the existing ABM.



Fig 3. Schematic overview of a building block following the MDSD approach.

In our presentation at the conference, we will discuss the lessons learned in the environmental model-
integration community advocating modularity, define a minimal set of principles grounded in software
engineering that the agent-based building block architecture could leverage from, substantiate this 
building block architecture with several examples and present an online platform for sharing reusable 
building blocks. The online platform is under construction at this moment, with several RBBs already 
tested using this template. We expect the launch of the beta version of the online platform to be in 
early September and hope to use this opportunity to discuss the first generation of reusable ABM 
building blocks and test the platform with the conference participants.

References
[1] V. Grimm et al., “The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to 

Improve Clarity, Replication, and Structural Realism,” J. Artif. Soc. Soc. Simul., vol. 23, no. 2, p. 7, 2020.
[2] M. Schlüter et al., “A framework for mapping and comparing behavioural theories in models of social-ecological 

systems,” Ecol. Econ., vol. 131, pp. 21–35, Jan. 2017, doi: 10.1016/j.ecolecon.2016.08.008.
[3] H. Muelder and T. Filatova, “One Theory - Many Formalizations: Testing Different Code Implementations of the 

Theory of Planned Behaviour in Energy Agent-Based Models,” J. Artif. Soc. Soc. Simul., vol. 21, no. 4, p. 5, 2018.
[4] A. R. Bell, D. T. Robinson, A. Malik, and S. Dewal, “Modular ABM development for improved dissemination and 

training,” Environ. Model. Softw., vol. 73, pp. 189–200, Nov. 2015, doi: 10.1016/j.envsoft.2015.07.016.
[5] B. W. Boehm, “Software Engineering Economics,” IEEE Trans. Softw. Eng., vol. SE-10, no. 1, pp. 4–21, Jan. 1984, 

doi: 10.1109/TSE.1984.5010193.
[6] F. Tsui, O. Karam, and B. Bernal, Essentials of Software Engineering. Jones & Bartlett Learning, 2022.
[7] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software Testing Techniques: A Literature Review,” in 

2016 6th International Conference on Information and Communication Technology for The Muslim World (ICT4M), 
Nov. 2016, pp. 177–182. doi: 10.1109/ICT4M.2016.045.

[8] P. Emanuelsson and U. Nilsson, “A Comparative Study of Industrial Static Analysis Tools,” Electron. Notes Theor. 
Comput. Sci., vol. 217, pp. 5–21, Jul. 2008, doi: 10.1016/j.entcs.2008.06.039.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Abstraction and reuse of object-oriented design”. 
ECOOP’93—Object-Oriented Programming: 7th European Conference Kaiserslautern, Germany, July 26–30, 1993 
Proceedings 7. Springer Berlin Heidelberg, 1993.

[10] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven Software Development: Technology, 
Engineering, Management. John Wiley & Sons, 2013.

[11] A. Ghorbani, “Structuring Socio-technical Complexity - Modelling Agent Systems Using Institutional Analysis,” 
2013.


