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Abstract. Contact tracing is an e�ective but costly non-pharmaceutical
intervention to control infectious diseases. Aiming to increase its e�-
cacy, we test whether contact tracing bene�ts from prioritizing in�uential
spreaders identi�ed based on socio-demographic characteristics. By uti-
lizing proxy measures of in�uential spreading, this approach circumvents
the common problem of targeted interventions that in�uential spreaders
are di�cult to identify in real-world scenarios. Simulation experiments
executed in an empirically-calibrated agent-based model show that trac-
ing the contacts of in�uential spreaders identi�ed by age and household
size is superior to strategies that prioritize random, the youngest, or the
oldest agents.
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1 Introduction

It is frequently suggested to apply interventions focusing speci�cally on in�u-
ential spreaders to �ght a pandemic with higher e�cacy [5, 10]. Because the
potential for in�uential spreading is, in most cases, not directly observable in
real-world scenarios, it is additionally suggested to determine suitable proxy
measures to make such approaches more feasible [8]. Aiming to explore the
potential bene�ts of the proposed approach, we use an empirically-calibrated
agent-based model to test whether the non-pharmaceutical intervention of con-
tact tracing could be optimized by prioritizing people with a higher risk for
in�uential spreading estimated based on age and household size. Although there
is already a high number of (modeling) studies focusing on contact tracing [9],
up to our knowledge, there is no research examining the potential improvement
of contact tracing by prioritizing expected in�uential spreaders identi�ed based
on socio-demographic characteristics.

Examining the optimization of contact tracing is especially interesting be-
cause of its high resource intensity. Although digital types of contact tracing
exist, in many countries, such as Germany, manual contact tracing, in which
local public health authorities interview the infected, trace their contacts and
monitor quarantine compliance, is still the predominant type of contact tracing.
In addition, in contrast to interventions like vaccinations, contact tracing does
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not o�er any protection to the infected but only to the contacts of the infected
or the contacts of the contacts of the infected. Hence, known strategies like pri-
oritizing the oldest to reduce hospitalizations, as it is e�ective for vaccination
campaigns [6], appear to be insu�cient in the context of contact tracing.

Age and household size are used as socio-demographic predictors to identify
in�uential spreaders because they are easy to observe in the real world, thus
ensuring the approach's feasibility. In addition, there is research showing the
importance of both variables regarding the vulnerability to infectious respiratory
diseases [1,4], which suggests that they might also be important to the spreading
of infectious diseases. Furthermore, the existing research and data allow us to
partly validate the simulation results with regard to those two predictors.

The procedure of this research project is as follows: In the �rst step, we
run an infectious disease simulation modeling the spread of a COVID-19-like
disease with no intervention present. Using the generated data, we regress the
number of infections caused directly or indirectly on age and household size.
In the second step, we run simulation experiments to evaluate the performance
of contact tracing when prioritizing contacts of agents for which the regression
model predicts the highest potential for in�uential spreading.

Tracing only the contacts of agents with the highest predicted potential for
in�uential spreading is superior under most tested conditions compared to three
reference strategies. In general, the results show that contact tracing might ben-
e�t from identifying in�uential spreaders and tracing only their contacts. In
particular, due to the speci�c calibration of the model to the characteristics of
the German population and COVID-19, the results suggest that age and house-
hold size are suitable proxy measures when implementing such an approach in
Germany to control COVID-19-like infectious diseases.

2 Methods

The agent-based model simulates the spread of a COVID-19-like infectious dis-
ease in a society of people living their daily life (an earlier version of the model
is described in detail in [3]). The main model procedures are agents visiting
various locations (e.g., home, work, or school) based on their attributes (e.g.,
age, work time per day), encountering other agents at those locations, infecting
encountered agents, or becoming infected. To attain a detailed representation of
the micro-level, we construct the population of agents directly from the data of
complete households of survey participants provided by the GSOEP [2]. Hence,
both the agent attributes and the closest contact network are directly deter-
mined by empirical data. To calculate the transmission probability between two
agents, we create a weighted contact network based on the time each agent vis-
its a location. To validate and calibrate the model, we use empirical data on
age-speci�c contact patterns [7] and on cases of COVID-19 in Germany.

To obtain a predictive regression model that can be used to identify supposed
in�uential spreaders based on age and household size, we �rst run an infectious
disease simulation in a scenario with no interventions. We count the number
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of infections caused directly or indirectly by each agent to measure in�uential
spreading. We regress that number on age and household size in the second
step using a negative binomial regression model. Because of the expected non-
linearity of the e�ect of age, age is categorized into six groups in orientation to
the age groups frequently used by the German Robert Koch Institute.

To test how contact tracing performs when prioritizing expected in�uential
spreaders, a simulation experiment was set up. As a baseline reference, we run a
scenario where contact tracing is implemented with a random selection of agents
whose contacts are traced. As additional references, we implemented the priori-
tization of the youngest and the oldest agents. Contact tracing is implemented
in the simulation model as follows: At the beginning of each run, a speci�c
proportion of agents, which is varied in the simulation experiments, is selected.
Depending on the scenario, the proportion of selected agents includes random
agents, the agents with the highest predicted potential for in�uential spreading,
the youngest or the oldest agents. During the simulation, only contacts of those
selected agents will be traced. The traced contacts, which are 80% of the agents
an index case had the most contact with during the three days before turning
symptomatic ill, are sent to strict quarantine for the subsequent ten days.

3 Results

Concerning the identi�cation of in�uential spreaders by socio-demographic at-
tributes, the regression analysis reveals that age and household size are relevant
predictors of in�uential spreading (Nagelkerke R² = 0.38). For each household
member, the expected number of caused infections increases by a factor of 1.48 on
average, holding age constant. Age shows a non-monotone e�ect, with middle-
aged agents causing the most infections (e.g., agents aged between 15 and 34
cause 1.89 times as many infections as agents younger than 5) and older adults
causing the least infections (e.g., agents between 60 and 79 cause only 0.64 times
as many infections as agents younger than 5).

Turning to the results of the simulation experiments, panel A in Figure 1
shows that all strategies can reduce the number of infections substantially. How-
ever, targeting the estimated most in�uential spreaders is signi�cantly more ef-
fective than other strategies for lower and medium proportions of people whose
contacts are traced. As panel B in Figure 1 shows, the improvement of this strat-
egy relative to the random scenario peaks when the contacts of about 20-30 % of
the most in�uential spreaders are being traced in case of infection. Because the
number of selected agents whose contacts are potentially traced in case of infec-
tion does not equal the number of agents traced during the simulation, panels C
and D show the number of prevented infections per one contact traced. Again,
the proposed strategy of targeting only the expected most in�uential spreaders
is superior for medium and low proportions of agents whose contacts are traced.
The results for hospitalizations show a very similar pattern (not shown in this
abstract).
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Fig. 1. A: Average number of infections that could be prevented relative to a scenario
with no contact tracing as a function of the number of agents whose contacts were
traced. B: Same as A but as di�erence to the scenario with no prioritization strategy
(random). C: Average number of infections that could be prevented per one traced
contact as a function of the number of agents whose contacts were traced. D: Same as
C but as di�erence to the scenario with no prioritization strategy (random).
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