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Extended abstract:

Designing policies in complex health systems needs to account for the implica-
tions that a given policy may cause not only on the targeted domain but also
on other and possibly related domains [17, 22]. For example, strong evidence
demonstrates that the school closure policies introduced to curb the spread of
COVID-19 (healthcare domain) had negative effects on the education of Dutch
children, especially for those belonging to the most economically disadvantaged
families (educational domain) [14, 10]. Further, policy implications can also affect
multiple time (e.g. in the short and the long-term) [24, pp. 150-152] and orga-
nizational scales (e.g. central and decentral [16]). For example, the learning loss
accrued during the pandemic due to school closure policies (short term) may
produce a considerably negative effect on the economic opportunities today’s
children will have in the coming decades (long-term) [1].

Computational models can be effective tools for mapping such complex multi-
domain and multiscale dynamics and provide policy support [13]. However, as
exemplified by the case of the COVID-19 pandemic, the models developed for
policy support typically focused on one domain e.g., epidemiology [2, 11]. More-
over, these models often investigated the short-term implications of policy inter-
ventions without considering their potential long-term impacts [2, 11], or over-
looked central/de-central dynamics even when these were relevant [16, 9]. One
potential reason for such design choices may be that using one model to capture
multi-domain and multi-scale (long-term/short-term or central/de-central) dy-
namics can result in very detailed models that are computationally unfeasible
or prone to high levels of uncertainty [20, 19]. To address these challenges, there
is promise in using a combination of models (or multi-models) instead of one
model [28, 25].

Multi-models are models composed of two or more sub-models capturing a
phenomenon of interest at different scales and/or through different modeling
paradigms. This modeling approach enables approximating a phenomenon of
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interest by functionally decomposing it into interacting sub-components each
captured by a single model. A multi-modeling architecture (MMA) consists of
the sub-models to be developed and their information exchange interactions.
As such, given an MMA, a multi-model can be implemented by developing the
sub-models delineated in the MMA.

In the literature, such a functional decomposition typically embraces two dif-
ferent perspectives, namely multiscale and multi-paradigm modeling. In multi-
scale modeling, the sub-models are designed to capture smaller portions of the
original scales at which the dynamics of interest occur [6]. For example, dif-
ferent models could be developed for the short- and long-term implications of
particular policies. These approximations can increase computational feasibil-
ity [4]. Multi-paradigm modeling focuses on capturing the sub-components of a
system through adequate modeling paradigms e.g. by allocating very detailed
paradigms (e.g. Agent-Based Models, ABMs) only where they are necessary and
using less detailed paradigms (e.g. System Dynamics Models, SDMs) when such
detail is not required [28, 23, 3, 5]. In sum, multiscale and multi-paradigm mod-
eling provide greater flexibility compared to individual models in the allocation
of model complexity where it is required, thus enabling researchers to seek a
balance between model complexity and computational costs.

Developing MMAs that capture multi-domain and multiscale policy problems
requires domain knowledge that spans several fields of expertise. As such, this
knowledge may not be readily available to one modeler or even to a team of
modelers. An effective approach for the development of these models can then
be co-designing them with experts from different domains of interest [21, 27].
There is general consensus that developing models with experts enables not
only to gather expertise from different fields but also to facilitate the generation
of a shared problem understanding across multiple domains [26, 27]. In such a
participatory process, a systematic and transparent approach is key at every step
so that the experts can understand the model and contribute to its development
[27]. This is particularly the case when transitioning from the development of
qualitative conceptual models (e.g. Causal Loop Diagrams or CLDs) that are
intuitive to understand, to quantitative computational models that are less easily
understood by experts but enable them to fully explore the implications of the
assumptions and decisions made [26].

The field of group model building provides conceptual modeling frameworks
and procedures that enable to co-develop conceptual models with experts [26, 15]
and translate them into individual computational models in a transparent and
systematic manner [12, 18, 7]. This process requires clarity with respect to the
domain knowledge that is required from experts to inform the development of
a computational model. For example, [7] propose a conceptual modeling frame-
work, namely the annotated Causal Loop Diagram (aCLD), that can capture
the domain knowledge required from experts to build SDMs (e.g. mathematical
expressions describing causal relationships). These authors then suggest a pro-
cedure for co-developing aCLDs with experts and translating them into SDMs
in a transparent and systematic manner.
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In the case of MMAs, the available literature has focused on the design of par-
ticipatory modeling processes to facilitate mediation and mutual learning among
different actors (including experts) to achieve a shared problem understanding
in single domain and scale contexts [8]. However, clearly defined domain knowl-
edge requirements and a procedure are missing that enable capturing the domain
knowledge required to systematically and transparently develop MMAs with ex-
perts in multiscale and multi-domain contexts in a systematic and transparent
manner.

In this article, we propose a systematic and transparent procedure to de-
velop MMAs based on clearly-defined domain knowledge requirements derived
from multi-paradigm and multi-scale modeling literature. To this end, we discuss
seminal work in the field of multi-scale modeling and multi-paradigm modeling
to identify (a) the key design choices involved in the development of MMAs and
(b) the domain knowledge requirements to inform such design choices. These
results inform the development of a procedure for developing MMAs. This pro-
cedure is then illustrated with the case of school closures in the Netherlands, by
looking and their multiscale and multi-domain implications. Finally, we discuss
the findings from the application and implications for the field of multi-model
development for multi-domain and multi-scale policy support.

The MMA resulting from this application is composed of two sub-models,
namely an ABM and an SDM. The ABM focuses on capturing the short-term
implications of school closures in terms of epidemiological dynamics (susceptible,
infected, recovered, and deaths). This model also captures the accumulation of
learning loss due to the combined effect of (a) home-schooling resulting from
school closures and (b) the economic situation of the children’s families [1]. The
ABM model runs each week for a total of two years. Once this simulation is
completed, the final learning loss obtained from the ABM provides the initial
condition for the SDM. This second model captures the (potential) long-term
implications of the learning loss resulting from school closures on future job
opportunities and on families’ economic situation. This model will run every
year for four decades. The next steps will include completing the development
of the SDM and running simulations with the developed multi-model not only
to assess the long-term implications of school closures on the economic situation
of families but also to explore how such implications affect resilience to future
crises.

The procedure for MMA development enabled us to systematically and trans-
parently design an MMA illustrating the potential short- and long-term implica-
tions of school closures for the healthcare and education domains in the Nether-
lands. As such, the procedure shows promise in the transparent and systematic
development of multi-models capturing multi-domain policy problems in public
health and other sectors. Future research will focus on refining the procedure
based on the case of school closures in the Netherlands and other cases. Addi-
tionally, while for this illustrative application the required domain knowledge
was obtained from literature, future research will emphasize the design of par-
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ticipatory techniques that provide the means to effectively elicit the required
domain knowledge from experts in multiple domains.
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