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Abstract. Our model employs simple heuristics as rules of thumb for
binary staple food choices: rice and non-rice. We compare the behaviour
of fast-and-frugal tree (FFTree) and tallying models to learn their suit-
ability to model staple food choices. The dynamics that emerge from the
uncertain nature of food choice, systematic preference change, and social
interactions are presented. With some explainable behaviours, we believe
that simple heuristics are effective for capturing more extensive staple
food choice dynamics.
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1 Introduction

Staple food choice is a more specific phenomenon in food choice study – more
limited options, a higher consumption volume. Therefore, imbalanced staple food
consumption and production system can cost global hunger. Among the Sustain-
able Development Goals (SDGs), staple food discussion appeared in three goals:
SDG 2—Zero Hunger, SDG 3—Health, and SDG 12— Responsible Consumption
and Production. These goals emphasised food sustainability, promoting aware-
ness of responsible consumption within regional and global scopes.

There is a growing concern about climatic volatility, droughts, floods, and
salinity in regions where staple crops are rain-dependent. Despite the possible
impact, staple food choice runs by default – people tend to consume one domi-
nant staple from where they live, showing an attachment to one particular staple
amidst their production capacity in the regions.

We take Indonesia as our case study in staple food choices. As one of the
most extensive rice producers among Southeast Asian countries, rice consump-
tion in Indonesia had reached 139 kg per capita per year, exceeding the FAO
rice consumption standard of 60-65 kg per year. The consumption outnumbered
fellow rice-producer countries in Southeast Asia, averaging 65-70 kg per capita
annually [2].

An agent-based model (ABM) has been extensively applied in the general
food supply chain context [13], but not in staple food choices. Interestingly,
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previous food choice studies dominantly adopted rational assumptions in the
agent’s mental model, with all information required to make a food decision and
resources to process the information.

Some examples are the Theory of Reasoned Action (TRA) to study meat
consumption behaviour [11], the Theory of Planned Behaviour (TPB; [1]) as
a predictive model of organic food consumption, and the Weight and Additive
model (WADD) to study preferential choice mechanism in the milk substitution
[5]. These mechanisms are known as complex decision models.

Contrary to the rationality assumption in the complex decision models, Gigeren-
zer et al. [6] observed simple rules (or heuristics) in how people decide. Instead
of considering all factors, people rely on a few critical pieces of information (or
cue) to make food choices [12]. These heuristics signalled that food choice is
contextual–one factor may dominate in one situation but not the other. Despite
its simplicity, studies have confirmed that heuristics in daily tasks with limits
in time, information, computation, and pressure to risk and uncertainty work as
accurately as complex decision models.

Katsikopoulos et al. [7] classified two simple strategies on how people trans-
form cues into a choice: counting (Tallying) or by ordering (Fast-and-Frugal
Tree, FFTree). Tallying examines whether there are enough reasons for assign-
ing an instance to a target class, while FFTree looks at the reason one at a time,
in a given order. Both are simple models that involve a small number of cues
combined in a simple way and require fast and transparent reasoning.

In this paper, we develop an ABM where agents are supported with the cogni-
tive skills necessary to make food choices between rice and non-rice using simple
models: Tallying and FFTree. We aim to study the simple models’ performance
when applied as our agent mental model in the staple food choice context.

2 Methods

We collected primary data from our ethnographic diary collection method: a
three-day food diary record and a post-diary survey of 44 respondents aged
between 20 to 65 years (M = 32.58, SD = 12.09) between November 2020 and
March 2021. From the data, we identified the six most informative staple food
choice cues in the decision model stage of this simulation: mealtime, ease, taste,
attitude, situation, and familiarity. Feature importance measures were drawn by
fitting the data using simple (tallying, FFTree) and complex decision models
(logistic regression, decision tree, and random forest).

Agent Attributes. In our model, six attributes determine the agent’s prefer-
ence for staple food. Random numbers with a uniform distribution between 0
and 1 were generated to represent the preferences according to mealtime, ease,
taste, attitude, situation, and familiarity. These preferences can be translated
into single-cue choices through simple thresholding in which the population-level
thresholds become model parameters.
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For instance, for agent i, the preferences are 0.46 (mealtime), 0.96 (ease), 0.77
(taste), 0.84 (attitude), 0.54 (situation), and 0.39 (familiarity). If the threshold-
ing rule is choosing rice if preference < threshold of 0.7, then agent i will have
the following single-cue choice: rice (mealtime), non-rice (ease), non-rice (taste),
non-rice (attitude), rice (situation), and rice (familiarity).

Additional two random numbers were generated to represent the influence-
ability and persuasiveness of agents. When the interaction in social networks is
activated, the preferences of agents with high influenceability tend to be affected
by agents with high persuasiveness as long as they are connected in the networks.
The associated mechanism will be described in the subsection Social Networks.

In the initial part of the simulation, we defined the attributes of the agents.
Cue thresholds are defined as the simulation parameter at the population level.
Based on the defined attributes and parameters, the agent makes decisions using
the following decision processes.

Decision Process. Empirical decision-making models can be established, fit-
ted, and tested with the available data. The simplest one is a univariate or
single-cue decision where the food choice is assumed to be taken after consider-
ing only one factor.

In a higher degree of deliberation, processing multiple factors into a decision
can be done through many schemes, among which can be represented by a simple
tallying course [6]. In this scheme, multiple influencing factors are identified as
the basis of the decision. The single-cue decision is estimated for each factor
based on the agent’s attributes. The final decision is made by tallying all single-
cue decisions without ranking or weighting. It is straightforward that the final
decision has the highest tally. When an even number of cues are being considered,
a tie may occur (refer to the example in subsection Agent Attributes). In such
cases, the default choice selected is rice.

Instead of considering all six cues, an agent can also consider a subset of the
cues, e.g., attitude, familiarity, and situation. The size of the cue subset can be
an additional degree of freedom in the model that simulates the variation among
agents.

Next, FFTree [8] is a simple decision-making model consisting of a sequence
of decision nodes. In contrast with a more complex decision tree, only one factor
is considered at a time. Simple, easy to understand, robust, insensitive to noisy
data, and working well in small-size data are critical characteristics of FFTree
that make it an excellent alternative model for some classification tasks. Practical
tools like FFTrees package in R [10] can help understand the empirical data from
the perspective of the fast-and-frugal decision model.

For our case, fitting the data using FFTrees produced a simple decision tree as
depicted in the left panel of Figure 1. This tree is dependent on the data supplied
for the fitting. Fitting a subset of the data may produce a different decision tree
even though the tree’s elements (decision node or single-cue decision) are the
same. Each decision node can either be type P (positive decision or continue
to the lower node), type N (negative or continue), or type E (the edge with
either positive or negative decision). How the factors are arranged in a tree’s
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Fig. 1. (a) FFTree that fits the empirical data drawn from food diary and post-diary
survey. This tree consists of decision nodes with three possible types (b, c, d).

nodes depends on the factors’ predictive capability. Yet, the sequence can also
be random because of the uncertain nature of food choice. Different people may
have different decision trees, and the trees may change over time (due to the
influence of social networks).

The agents’ decision process is modelled using tallying or FFTree in the next
step. In the first decision model, a subset of single-cue decisions is randomly
selected and tallied. The decision with the highest tally becomes the final decision
for each mealtime. To represent the uncertain nature of choice, the size of the
subset mentioned above is randomly selected from [1, 2, . . . , 6] where 6 is the
maximum number of cues to consider.

In the FFTree model, a random decision tree is grown by randomly sequenc-
ing the decision nodes, each with its type (see Figure 1). The actual depth of the
tree is determined by how the type-E node is positioned. This node will be the
end of the decision tree. After the tree is grown, the single-cue decisions from
the previous stage are evaluated sequentially.

Social Network. People’s preference for staple food may change over time. For
instance, people can increase familiarity with non-default staple food by absorb-
ing information and knowledge from society. The dynamics of social influence in
the social network can be modelled using one of three classes of social influence
models, namely assimilative social influence models, similarity-biased influence
models, and repulsive influence models [3].

Among the three, the similarity-biased influence is deemed suitable for mod-
elling the diffusion of values in the network because an individual is likely to
share opinions and influence others with a certain degree of similarity. The de-
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gree of similarity or confidence level in [3] may vary from agent to agent. When
simulated using a population with initially diverse opinions, the typical size of
the degree of similarity affects the final state of the simulation, either convergence
toward consensus or clustered opinions.

Following the interaction within the social network, the single-cue preference
of an agent i will be affected by the injunctive norm exerted by its neighbours
with relatively similar preferences. This diffusion can be formulated as follows
[3]:

a′i = ai,t + µ
∑
i ̸=j

fij with fij =

{
(aj − ai), if |aj − ai| ≤ ϵ,
0, otherwise (1)

where µ with a typical value between 0 and 0.5 is the rate of opinion conver-
gence while ϵi is the confidence threshold of agent i. The latest parameter can
also be described as the degree of influenceability with the higher value means
a broader tolerance of an agent for different insights. Note that f represents
the similarity measure among agents’ opinions. Using this expression, one may
expect that agent i will not significantly change its preference if its neighbours
have symmetrically distributed preferences around ai.

In the ABM, a small value of µ was initiated at the agent level while ϵ is set
to 1 (agent barely ignores similarity). The degree of persuasiveness is included in
the model such that social influence emerges from only neighbouring agents with
enough persuasiveness. When social interaction is activated, an agent checks
the preferences of its neighbours and slowly shifts its preference toward the
average value such that agents’ preferences in a particular node will converge.
Considering the fact that the agent does not socially interact at every mealtime,
we added a 10% probability of interaction to slow down the rate of convergence
in a realistic way.

Parameters, Variables, and Simulation. We simulated a population of 500
agents distributed on a random social network [14]. Small initial values of µ and
ϵ are assigned to each agent. The simulation ran for 300 steps, similar to the
duration of 100 days, assuming three mealtimes a day. A python code equipped
with agentpy package [4] was used for the ABM simulation [9].

To assess the behaviour of the model, we ran the simulation using several
scenarios, from the simplest one to the more complex one. Table 1 summarizes
the parameters used in the scenarios. The output variable is the time-weighted
population’s average preference for rice at the end of the simulation.

In the base scenario, all cues were considered in both decision models. The
structure of the FFTree follows the empirical model depicted in the left panel of
Figure 1. All thresholds for single-cue decisions were set to 0.7.

In scenario A, the familiarity thresholds were gradually changed from 0.7
to 0.3 such that a decrease in preference was expected to change. This change
at the population level mimics a systematic change in society, either promoted
by the government or driven by the socioeconomic situation. This change at the
population level mimics a systematic change in society, either promoted by the
government or driven by the socioeconomic situation.
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Table 1. Summary of the simulation parameters for five different scenarios.

Scenario
Parameter Base A B C D
Attitude threshold 0.7 0.7 0.7 0.7 0.52
Ease threshold 0.7 0.7 0.7 0.7 0.69
Familiarity threshold 0.7 variablea 0.7 variableb variableb

Situation threshold 0.7 0.7 0.7 0.7 0.61
Taste threshold 0.7 0.7 0.7 0.7 0.51
Time threshold 0.7 0.7 0.7 0.7 0.40
# cues 6 6 random 6 random
FFTree fixed fixed random fixed random
Influencers 0% 0% 0% 10% 10%
agradual change from 0.7 to 0.3
bchange by social influence

In scenario B, randomization was included in the decision models. Explic-
itly, the number of cues for tallying was randomly selected from [1, 2, . . . , 6] while
the tree structure was also randomized. Scenario C departed from the base sce-
nario where we considered the role of social influence, and one-tenth (10%) of the
population was converted into influencers (i.e. agents with high persuasiveness
and low preference for rice). At last, Scenario D adopted thresholds derived
from our empirical data, but the familiarity was influenced by social interaction.
These adopted thresholds were associated with an average preference for rice
of 60%. As in scenario C, scenario D started with 10% influencers with a low
preference for rice.

3 Results and Discussion

Figure 2 showcases the average preference for rice over time, simulated under
different scenarios in a single run with a constant random seed. The result from
the base scenario run shows flat lines at different values. Even though the single-
cue decision thresholds were set to 0.7, the average preferences for rice were
higher than 0.7. Multi-run experiment (50 repetitions) with this scenario yields
the average preferences of 0.93 ± 0.01 and 0.84 ± 0.01 for tallying and FFTree
models, respectively.

A simple linear model of a multi-cue decision may lead to an average prefer-
ence that is close to or even equal to the single-cue preference, while non-linear
models like tallying and FFTree may behave slightly differently. For each agent,
the single-cue preferences were drawn from random numbers with uniform dis-
tribution and then translated into single-cue choices by thresholding rule: choose
rice if preference < threshold parameter (population-level) or choose non-rice.
The rule produces around 70% positive decisions (choosing rice) and 30% neg-
ative (choosing non-rice). Draw in the tallying with an even number of cues
resulted in a higher tendency toward default choice (rice). This explains a sig-
nificant deviation of the average preference from the expected value of 0.7.
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On the other hand, FFTree yields a more moderate deviation from the single-
cue preference, mainly because of its unique decision tree structure. Instead of
evaluating the entire FFTree, an agent can rely on some parts of the tree to
make a decision. Referring to the example in subsection Agent Attributes and
the FFTree in figure 1(a) agent i only considers the two uppermost decision
nodes (non-rice for both ease and attitude) before the final choice of non-rice.

Fig. 2. The average preference for rice over time, faceted over different scenarios.

Fig. 3. The average preference for rice from scenario D. Tick curves are the locally
smoothed profiles.

Scenario A defines a systemic change in the familiarity threshold. The sys-
tematic change of the familiarity threshold (from 0.7 to 0.3) in tallying model
transformed the average preference from 0.94 to 0.90. This reduced effect is due
to the fact that familiarity is just one out of six cues considered in the simula-
tion. Meanwhile, the model with FFtree shows an even more suppressed change
of approximately 0.01. The reason is that familiarity is located at the bottom of
the decision tree (Figure 1).

In this scenario, an ideal intervention would be the involvement of the cen-
tral government in promoting non-rice consumption. A massive introduction to
alternative staples is expected to increase the preference. Referring to the cues,
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ease and attitude played an important role in scenario A. Alternative staples
can be upgraded by being processed for consumers’ convenience. For instance,
cassava can be sold in a washed, peeled, and grained form, while yam can be
distributed in a ready-to-cook noodle, and potato can be cut in frozen packaging.

Scenario B illustrates the uncertain nature of food choice. Due to the variabil-
ity of the number of cues taken into consideration, the tallying model produced
an average preference that fluctuates around 0.84. The same fluctuation is also
observed in the result from FFTree, while the average preference is around 0.73.
These observed fluctuations of preference at the population level are coming
from the same fluctuations at the agent level.

Scenario C induces social influence on the staple food choice. Familiarity with
alternative staples may change over time due to the interaction with other agents,
especially the influencers who promote non-rice consumption. The decreases in
the average preference for rice are observed, though the effect for the model
with FFTree is suppressed. The same explanation as in scenario A is applicable
to this suppressed change. To increase familiarity towards alternative staples,
some possible interventions are intensifying the recruitment of influencers and
boosting social media publications as non-rice consumption normalisation.

Figure 3 displays the simulation result for scenario D, where the thresholds
were drawn from empirical while the tree was randomized. The tallying started
from the average preference of 0.60, while the second model started from 0.58.
From our empirical data, a naive rice preference estimate is 0.60. At a glance,
the tallying model sufficiently provides a good estimate of the average preference
though its dynamics over time require further examination.

In summary, the presented results demonstrate explainable behaviours of
aggregated preferences for rice, which are based on tallying and FFTree decision
models. The key feature of the models is the time-variant characteristics affected
by systematic intervention, social influence, and random processes.

4 Limitation and Future Work

Understanding individual staple food choice behaviour is paramount to achiev-
ing climate-friendly food system goals. ABM is powerful in capturing the tacit
staple food choice mechanism and articulating the emerging properties of social
interaction.

We introduce simple heuristics as a mental model for staple food choices in
the agents. Explainable properties and behaviours of the model are presented.
Thus, including such decision models for more practical cases becomes possible.
How the staple food choice affects the demand for rice and other commodities
can be of interest in the near future. As an archipelagic country with a diverse
pattern of staple food production and consumption, Indonesia can be the test
bed for the model.

Even though the simulation result with empirical data is presented, it can
only be validated with single-time data. The dynamics of staple food choice under
social influence is a fascinating aspect to simulate, but the model validation needs
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time-series data which is harder to get. The national economic survey by the
Indonesian Bureau of Statistics (BPS) can be the source of such data. However,
harmonisation and homogenisation of the data are challenging to accomplish
before utilising the data.
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