
Does a group’s size affect the behavior of a
crowd? An analysis based on an agent model

Carolina Crespi[0000−0003−1050−2453] and Mario Pavone[0000−0003−3421−3293]

Department of Mathematics and Computer Science
University of Catania

Viale A. Doria 6, I-95125 Catania, Italy
carolina.crespi@phd.unict.it

mpavone@dmi.unict.it

Abstract. The field of crowd simulations has gained increasing atten-
tion due to its numerous applications, such as emergency management,
sociology, computer games, and path planning. Despite the increasing
literature available, creating crowd models is still a challenging problem
due to the complex and dynamic nature of crowd behavior and the lack
of data available. In this paper, a mesoscopic model is proposed that
combines agent-based models with swarm intelligence methods to inves-
tigate the effect of group size on the behavior of the population. Two
types of analysis were carried out, an overall analysis and a type analy-
sis, and three evaluation metrics were used: the number of agents that
reached the exit, the exit times, and the cost of the paths taken to reach
the exit.
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1 Introduction

Crowd simulations have gained increasing attention in recent years due to their
numerous applications, such as emergency management [11], sociology [14], com-
puter games [22], and path planning [15] among many others. This has led to
a wide range of models and techniques being developed in the field, with sig-
nificant progress made possible by advancements in computer hardware and
software. Despite the increasing literature available, creating crowd models is
still a challenging problem due to several reasons. Firstly, there is a lack of data
available for modeling crowd behavior, which can limit the accuracy of mod-
els [12]. Secondly, crowd behavior is a complex and dynamic phenomenon, that
may be influenced by a wide range of factors such as age, environment, and
personality [8]. In [13] the authors propose an agent-based model of emergency
evacuation that takes into account panic behaviors. In [1] are considered the
physical characteristics of pedestrians while in [9] a specific emergency is taken
into account. It follows that there exist various crowd behavior models, and each
one has a unique perspective on the issue based on the framework used. Con-
sequently, the outcomes obtained from different frameworks vary, and selecting
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one over the other can be challenging as none outperforms others. These models
can be split out in three main categories [20]: (1) microscopic models [23], in
which individuals are considered as distinct entities, with unique traits whose
interactions may produce unexpected collective behaviors; (2) macroscopic mod-
els [10] in which individuals are viewed as a continuous flow generally governed
by adequate physical dynamics; and (3) mesoscopic models whose aim is to com-
bine the strengths of both macro and micro techniques [21]. Indeed, although
microscopic models are adept at studying collective behavior, they are com-
putationally expensive and not well-suited for modeling large-scale scenarios.
Conversely, macroscopic models struggle to capture individual interactions but
can simulate thousands of individuals. In this paper, we present a mesoscopic
model that combines agent-based models, known for their effectiveness in mod-
eling individual decision-making and social behavior, with swarm intelligence
methods, which have shown their usefulness not only for optimization purposes
[5], but also in modeling crowd dynamics [4,24,16]. In this model, a population
of virtual agents is tasked with reaching a specific location, referred to as exit,
starting from a designated point. Agents may be divided in groups of different
sizes and can adopt two distinct behavioral strategies: collaboration, which in-
volves sharing information about paths and/or repairing damaged paths, and
defection, which entails not sharing any information, destroying paths and/or
nodes, but still benefiting from the help of collaborative agents. Despite their
behavioral differences, the primary objective for each agent is to reach the exit
point. The aim of this paper is to examine how the behavior of a population as a
whole is influenced by the size of the groups that the initial population is divided
into, as well as the behavioral strategies that are employed. The occurrence of
group formation among pedestrian crowds in various circumstances has been
frequently observed, and it has been shown that the presence of groups can have
a significant impact on crowd movement [7] as well as their size and numbers
may affect the evacuation time [19]. In [2] the authors considered a model with
a crowd divided into several groups and have found that groups’ presence may
positively affect the information transmission among agents. In this context, two
types of analysis were carried out: an overall analysis, which compares the per-
formance of populations divided into groups of varying sizes, and a type analysis,
which examines the performance of collaborators and defectors within the same
groups. Three evaluation metrics are considered and simultaneously compared
for both types of investigation, namely the number of agents that reach the exit;
the exit times; and the cost of the paths crossed to reach the exit.

2 Model

The framework of our model draws inspiration from the Ant Colony Optimiza-
tion algorithm, which is a metaheuristic algorithm that emulates the behavior
of real ants. This algorithm is commonly used to tackle various types of combi-
natorial optimization problems, including scheduling and routing problems [17],
coloring [6], path problems [3], and others. In our study, we utilize the com-
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putational framework of the Ant Colony Optimization algorithm to model the
behaviors of the agents and the environment, as well as how the agents interact
with time in the environment. We represent the environment in our model as a
weighted undirected graph G = (V,E,w). Here, V denotes the set of vertices,
E ⊆ V ×V denotes the set of edges, and w : V ×V → R+ is a weighted function
that assigns a positive cost to each edge. Let Ai = j ∈ V : (i, j) ∈ E denote the
set of vertices adjacent to vertex i. At any given time-step t, an agent k visits
a non-empty sequence of vertices πk(t) = (π1, π2, . . . , πt) (which may include
repeated vertices), where (πi, πi+1) ∈ E for i = 1, . . . , t − 1. A population of
N agents begins at a given location and explores the environment to move to
the target location as quickly as possible, possibly taking a less expensive route.
It is divided into Γ groups, and each group starts its investigation at regular
intervals. An agent k placed on a node i moves to one of its neighbour vertices
j, with a probability pkij(t) defined by:

pkij(t) =


τij(t)

α·ηij(t)β∑
l∈Jk

i
τil(t)α·ηil(t)β if j ∈ Jki

0 otherwise,
(1)

with Jki = Ai \ {πkt−1} all possible displacements of the agent k from vertex
i. Furthermore, τij(t) is the trace intensity on the edge (i, j) and ηij(t) is the
desirability of the edge (i, j) at a given time t. The importance of trace intensity
in relation to the desirability of an edge is determined by the two parameters α
and β. The intensity of the trace τij on a given edge (i, j) indicates the number
of times that edge has been crossed and serves as a guide for agents in selecting
their path. Essentially, agents make decisions based on the behavior of other
agents. The trace is considered a passive source of information since it is left
unintentionally by agents and its value is incremented by a constant K after
each movement as follows:

τij(t+ 1) = τij(t) +K, (2)

The value of K is determined by the user. According to Eq. 2, each agent un-
intentionally leaves a trace with a constant value after crossing an edge (i, j).
The trace gradually diminishes over time, reflecting the impact of time on the
environment. Specifically, after every T ticks1, the amount of trace on the edges
decreases based on the following rule:

τij(t+ 1) = (1− ρ) · τij(t), (3)

with ρ evaporation decay parameter. The desirability ηij(t) in Eq. 1 determines
how much an edge (i, j) is promising at a given time t. The agents do not know it
in advance because it is connected to their state of knowledge of the environment.
After crossing an edge, the agents intentionally release a piece of information
about the weight of the crossed edge. However, agents do not directly see the
1 The time unit used
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weight of each edge but they can know it in two ways: (1) by traversing the edge
and storing its weight in their memory. This constitutes their prior knowledge
w̄kp equal to w̄kp = 1

n

∑n
i=1 w(πi, πi+1); (2) if a piece of information is present

on the nearest endpoint of the edge to its current node. In detail, an agent k
placed on a node i can see the weight wij of the edge (j, i) only if this piece
of information is present on the nearest endpoint to node i of the edge (j, i).
This constitutes their local knowledge w̄kl equal to w̄kl = 1

m

∑m
i=1 w(πi, πi+1),

where π(t) = (πi, π2, . . . , πi+1) is a generic path from node i to node i + 1, n
is the number of visited edges and m is the number of neighbors’ edges to the
position where is present the information. The path cost of the entire path from
the starting to the destination point is defined as

∑t−1
i=1 w(πi, πi+1), with π1 and

πt are the starting and destination points, respectively. Consequently, the value

(a) (b)

Fig. 1: An agent k placed on a node i sees the information (green dot) about
the weight of the edge (i, j) only if it is present on the nearest endpoint (a),
otherwise it doesn’t see it (b).

of the desirability ηij(t) will be determined as follow:

ηij(t) =


1
wij

if info 6= 0 and T 6= 0
1
w̄ if info = 0 and T 6= 0

1 if info = 0 and T = 0

(4)

where w̄ is equal to: w̄ =
w̄kp+w̄kl

2 . To put it differently, when an agent k is
situated on a node i, it will determine the desirability ηij(t) of an edge (i, j)
by considering the weight of the edge. If information about the edge weight is
available at either of the nearest endpoints to node i, the agent will evaluate the
desirability as the inverse of the weight of the edge. In this situation, the lower
the weight of an edge is, the higher its desirability will be. Fig 1 represents a
common situation that happens in a simulation. Supposed the green circle to
be the piece of information present on the endpoint of an edge (i, j). An agent
k placed on the node i sees the information only if it is present on the nearest
endpoint, otherwise, it doesn’t see it. If information about the weight of neigh-
boring edges (i, j) is missing or not visible but at least one piece of information is
available, as represented in Fig 2b, the agent will estimate the desirability ηij(t)
as the inverse of its global knowledge w̄ about the environment. This estimation
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is obtained by averaging the agent’s prior and local knowledge, as described in
eq. ??. However, it’s possible for an agent to have no local knowledge w̄kl when
no information is available about the weight of the neighboring edges. In such
a scenario, the agent will evaluate the weight of each edge as the inverse of its
prior knowledge w̄kp . If both prior and local knowledge is zero, as in Fig 2a the
agent will evaluate the desirability of each edge as equal to one. This situation
can occur only at the beginning of exploration when the agent is positioned
at the entrance of the environment and has yet to cross the first edge. In this

(a) (b)

Fig. 2: In (a) an agent k on a node i estimates the desirability of its adjacent
edges as equal to 1 if and only if it is at the beginning of its exploration because
it has not nor prior wkp = 0 neither local knowledge wkl = 0. In (b) an agent k
arriving at a node i from a node i− 1, estimates the desirability of its adjacent
edges as equal to the inverse of its global knowledge if the information about
their weights is missing or not visible. If the information is present and visible,
it estimates the desirability as the inverse of the weight of the link.

model, there are two types of agents: collaborators (denoted by C) and defectors
(denoted by D). When collaborators cross an edge (j, i), they leave behind a
piece of information ηij(t) to aid other agents in selecting promising paths. Be-
fore making a decision on where to go, collaborators may also attempt to repair
a damaged edge or vertex with probabilities PCe and PCv , respectively. On the
other hand, defectors do not leave any information behind when crossing edges
and may accidentally cause damage to an edge or vertex after crossing it, with
probabilities PDe and PDv , respectively. A damaged edge becomes inaccessible,
while a damaged vertex remains reachable but cannot be crossed. To elaborate,
collaborators primarily engage in actions that support other agents in reaching
the exit point as quickly as possible. They proceed cautiously through edges and
vertices, taking care not to cause any harm and making repairs if needed. Fur-
thermore, they leave information about edge costs (ηij(t)) so that other agents
can use it to make decisions. In contrast, defectors tend to behave hastily and
carry out actions that could potentially disrupt the environment. After crossing
a node or edge, they might accidentally damage it, which reduces the chances
of other agents exploring the environment. This behavior could affect not only
collaborative agents, but also themselves, especially if the disrupted path is crit-
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ical to reaching the exit. Whenever agents traverse an edge, the time they take
is directly proportional to the weight of that particular edge.

The presented investigation aim is to assess how the behavior of two agent
types and the number of agent groups impact the crowd. To achieve this, we used
the number of agents reaching the exit, path cost, and exit time as comparative
measures. These metrics are concurrently analyzed since the destruction or repair
of nodes and edges make the environment dynamic. Indeed, due to this different
agents behavior, periodic destruction and/or restoration cause the environment’s
structure to change, making it dynamic.

3 Experimental Results

Two types of analyses was performed: overall analysis in which the system’s
performance are investigated when divided into groups of different sizes, and
type analysis in which collaborators’ performance and defectors present in the
same groups are compared. For each analysis, as said, we simultaneously compare
three evaluation metrics: number of agents reach the exit; exit times; and paths
cost.

The proposed model was developed using the NetLogo framework [18], a
well-known programmable modeling environment for multi-agent systems. The
environment is modeled as a grid network where each node may be connected
to up to eight neighbors, and where to each edge is assigned a weight that is
a real number randomly selected uniformly from the range ]0, 1]. Specifically to
this investigation, an environment with |V | = 225 vertices and |E| = 501 edges
was put up. Further, a scenario with N = 1000 agents split into Γ groups has
been simulated, where the Γ value vary among the following set: 1, 2, 4, 5, 10, 100.
The distribution of the types of agents inside groups is determined by the real
user-defined parameter f ∈ [0, 1], called collaborative factor: the value assigned
to f determines the ratio of collaborative and defector agents. Specifically, f
represents the fraction of collaborative agents, and (1− f) of defector ones. As
a result, a group may have either one type of agent or a mix of both: when
f = 0.0, only defector groups are formed; when f = 1.0, only collaborative
groups are formed; when, for instance, f = 0.6, each group will have 60% of
agents as collaboratives and 40% as defectors. Any group starts its exploration
after a fixed time of Te = |V | has elapsed since the preceding group’s start: i–th
group begins its exploration at time t = Te × (i− 1). A time limit is set for the
entire crowd to reach the exit, and it is defined as Tmax = c × Γ × |V |, with
c constant factor set to 5. Group membership of an agent determines the time
window within which it must reach the exit, and i.e. Ti = Tmax − (Te × (i− 1)),
where i represents the group to which the agent belongs. Follows that agents of
the early groups have a more extended time frame to explore the environment
than those in the later groups. This means that agents belonging to the same
group may exit at different time. The impact of time in this model is represented
as a gradually reduction over time of the trace in the environment, considering
a fixed degradation interval of Td = |V |. As a result, the Eq. 3 rule is applied



Does a group’s size affect the behavior of a crowd? 7

every Td ticks with an evaporation rate of ρ = 0.001. In the beginning, the
trace on all edges is set to τij(t = 0) = 1.0. Furthermore, the destruction and
repair probabilities are equal for both types of agents,(PCe = PDe = 0.02 and
PCv = PDv = 0.02). To pursue our goal, i.e. investigate how different sizes of
groups affect the whole system, several experiments at the f varying have been
performed (from 0.0 to 1.0 with 0.1 increment) and for each simulation, 10
independent runs were performed. These experiments have been conducted for
all Γ values considered.
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Fig. 3: Overall number of exited agents

The first investigation focuses on analysing the system as a whole observing
the contributions made by both collaborators and defectors. The purpose is to
figure out how group size affects the entire system. Fig 3 shows the number of
exited agents at different group values, and at collaborative factor f varying.
Each colored tile in the legend indicates the number of groups Γ that the crowd
has been split into. As the number of groups increases, the number of agents
who reach the exit also increases, particularly when the crowd is separated into
50 or 100 groups, almost all of the agents in the crowd reach the exit when
0.6 ≤ f ≤ 0.9. Crowd performance worsens as the Γ decreases, as well as when
the crowd is entirely collaborative (f = 1.0), with the worst configuration being
one in which all crowd agents belong to a single group. In conclusion, when
the crowd is split into several small groups, many more agents reach the exit
compared to when it is divided into few very large groups or a single group
that contains the entire crowd. The figures 4 and 5 display the exit times and
path costs, respectively. These metrics have been normalized based on the group
success rate, which is the percentage of agents in a group that reaches the exit
point. Interestingly, the crowd appears to exit faster when divided into a few



8 C. Crespi and M. Pavone

1e+04

3e+04

1e+05

3e+05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Collaborative Factor

T
im

e

Groups Number

1

2

4

10

50

100

Average exit time

Fig. 4: Overall exit time.
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Fig. 5: Overall path cost.

groups with a large number of agents, but at the same time appears to find
cheaper paths (as well as have much more agents that reached the exit) when
divided into a large number of groups with few agents. This indicates that the
exit times are obtained by a small number of agents and, therefore, evaluating all
metrics simultaneously shows that the crowd’s performance cannot be positively
assessed when it is divided into a few groups with a lot of agents. Indeed, in
this case, the path costs are worse and this suggests that the optimization cost
process is driven primarily driven by the groups rather than the number of agents
itself. Generally, except for the exit times, the more the number of groups into
which the crowd is divided, the better its performance is. Furthermore, when
the crowd is solely composed of collaborative agents (f = 1.0), its exit times and
path costs are worse for all values of the groups’ number.
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The second analysis conducted addresses the investigation of the system’s
performance by separately inspecting the performance of collaborators and defec-
tors. The goal is to identify any disparities between the two types of performance
and determine which type of agent would perform better. Figure 6 displays the
number of agents that exited, categorized by type, for various group values as
the collaborative factor, f , changes. The number of exited collaborators and
defectors both increase as the collaborative factor increases and reaches their
maximum at different f values based on Γ . The most notable difference between
the two is that collaborators’ maximum is achieved at higher f values, and the
trend is nearly linear for Γ > 10 with a slight drop at f = 1.0. In contrast, the
defectors’ maximum is attained at lower f values, and the trend is also mostly
linear for Γ > 10, but with a decreasing trend. The two figures, Fig 7 and Fig 8,
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Fig. 6: Number of exited agents per type C and D

display the exit times and path costs for both agent types at different values of f
and Γ . The results confirm the overall analysis, which suggests that collaborators
and defectors exit faster when there are fewer groups with many agents, while
they find cheaper paths with more groups containing fewer agents. Collaborators
exhibit different best exit times for different values of Γ , with f = 0.9 for Γ ≥ 50
and f = 0.7 for Γ ≤ 50. When f = 1.0, the performance worsens, as seen in the
previous metric. Defectors show smoother behavior, with exit times improving
slowly as f increases. It is worth noting that there is a performance jump be-
tween Γ = 50 and Γ = 10, which may be due to a significant difference in values.
These observations apply to the path costs as well, although the performance
differences are less pronounced. Collaborators and defectors find better paths as
Γ and f increase, and their behavior is more stable as Γ increases. However, in
this case, collaborators do not perform better when f = 1.0
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4 Conclusions

In this research work, we introduced an agent-based model to simulate crowds
and investigate the effects of dividing the population into Γ groups of varying
sizes. The model is based on the Ant Colony Optimization algorithm (ACO)
and includes two types of agents: collaborators and defectors. The goal of both
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agents is to reach the exit of a virtual environment starting from a designated
entrance. Collaborators help other agents reach the exit by providing information
about the paths they have taken and repairing damaged paths. Defectors, on
the other hand, do not provide information and may accidentally damage paths.
The proportion of collaborative and defector agents is controlled by a parameter
called the collaborative factor (f), which is expressed as a fraction of the total
population. To evaluate the performance of the model, we used metrics such
as the number of agents that successfully exited, exit times, and path costs.
We conducted two types of analyses: an overall analysis, where we varied the
collaborative factor and group sizes, and a type analysis, where we separately
evaluated the performance of collaborators and defectors. Our results show that
when the crowd is divided into fewer, larger groups, the exit times are faster.
However, when the population is divided into many smaller groups, more agents
can exit, and they are able to find cheaper paths. We also found that, overall,
collaborative agents outperform defectors, particularly in terms of the number of
agents that successfully exit. However, defectors have a slight advantage in terms
of exit times and path costs, as they are better able to take advantage of the
presence of collaborative agents. Our findings suggest that the size and number
of groups can significantly impact crowd behavior and should be considered when
designing crowd management strategies.
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